This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A neighborhood of +oo contains an unbounded interval based at a real number. Together with xrtgioo (which describes neighborhoods of RR ) and mnfnei , this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pnfnei | |- ( ( A e. ( ordTop ` <_ ) /\ +oo e. A ) -> E. x e. RR ( x (,] +oo ) C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ran ( y e. RR* |-> ( y (,] +oo ) ) = ran ( y e. RR* |-> ( y (,] +oo ) ) |
|
| 2 | eqid | |- ran ( y e. RR* |-> ( -oo [,) y ) ) = ran ( y e. RR* |-> ( -oo [,) y ) ) |
|
| 3 | eqid | |- ran (,) = ran (,) |
|
| 4 | 1 2 3 | leordtval | |- ( ordTop ` <_ ) = ( topGen ` ( ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) u. ran (,) ) ) |
| 5 | 4 | eleq2i | |- ( A e. ( ordTop ` <_ ) <-> A e. ( topGen ` ( ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) u. ran (,) ) ) ) |
| 6 | tg2 | |- ( ( A e. ( topGen ` ( ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) u. ran (,) ) ) /\ +oo e. A ) -> E. u e. ( ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) u. ran (,) ) ( +oo e. u /\ u C_ A ) ) |
|
| 7 | elun | |- ( u e. ( ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) u. ran (,) ) <-> ( u e. ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) \/ u e. ran (,) ) ) |
|
| 8 | elun | |- ( u e. ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) <-> ( u e. ran ( y e. RR* |-> ( y (,] +oo ) ) \/ u e. ran ( y e. RR* |-> ( -oo [,) y ) ) ) ) |
|
| 9 | eqid | |- ( y e. RR* |-> ( y (,] +oo ) ) = ( y e. RR* |-> ( y (,] +oo ) ) |
|
| 10 | 9 | elrnmpt | |- ( u e. _V -> ( u e. ran ( y e. RR* |-> ( y (,] +oo ) ) <-> E. y e. RR* u = ( y (,] +oo ) ) ) |
| 11 | 10 | elv | |- ( u e. ran ( y e. RR* |-> ( y (,] +oo ) ) <-> E. y e. RR* u = ( y (,] +oo ) ) |
| 12 | mnfxr | |- -oo e. RR* |
|
| 13 | 12 | a1i | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> -oo e. RR* ) |
| 14 | simprl | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> y e. RR* ) |
|
| 15 | 0xr | |- 0 e. RR* |
|
| 16 | ifcl | |- ( ( y e. RR* /\ 0 e. RR* ) -> if ( 0 <_ y , y , 0 ) e. RR* ) |
|
| 17 | 14 15 16 | sylancl | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> if ( 0 <_ y , y , 0 ) e. RR* ) |
| 18 | pnfxr | |- +oo e. RR* |
|
| 19 | 18 | a1i | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> +oo e. RR* ) |
| 20 | xrmax1 | |- ( ( 0 e. RR* /\ y e. RR* ) -> 0 <_ if ( 0 <_ y , y , 0 ) ) |
|
| 21 | 15 14 20 | sylancr | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> 0 <_ if ( 0 <_ y , y , 0 ) ) |
| 22 | ge0gtmnf | |- ( ( if ( 0 <_ y , y , 0 ) e. RR* /\ 0 <_ if ( 0 <_ y , y , 0 ) ) -> -oo < if ( 0 <_ y , y , 0 ) ) |
|
| 23 | 17 21 22 | syl2anc | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> -oo < if ( 0 <_ y , y , 0 ) ) |
| 24 | simpll | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> +oo e. u ) |
|
| 25 | simprr | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> u = ( y (,] +oo ) ) |
|
| 26 | 24 25 | eleqtrd | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> +oo e. ( y (,] +oo ) ) |
| 27 | elioc1 | |- ( ( y e. RR* /\ +oo e. RR* ) -> ( +oo e. ( y (,] +oo ) <-> ( +oo e. RR* /\ y < +oo /\ +oo <_ +oo ) ) ) |
|
| 28 | 14 18 27 | sylancl | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> ( +oo e. ( y (,] +oo ) <-> ( +oo e. RR* /\ y < +oo /\ +oo <_ +oo ) ) ) |
| 29 | 26 28 | mpbid | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> ( +oo e. RR* /\ y < +oo /\ +oo <_ +oo ) ) |
| 30 | 29 | simp2d | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> y < +oo ) |
| 31 | 0ltpnf | |- 0 < +oo |
|
| 32 | breq1 | |- ( y = if ( 0 <_ y , y , 0 ) -> ( y < +oo <-> if ( 0 <_ y , y , 0 ) < +oo ) ) |
|
| 33 | breq1 | |- ( 0 = if ( 0 <_ y , y , 0 ) -> ( 0 < +oo <-> if ( 0 <_ y , y , 0 ) < +oo ) ) |
|
| 34 | 32 33 | ifboth | |- ( ( y < +oo /\ 0 < +oo ) -> if ( 0 <_ y , y , 0 ) < +oo ) |
| 35 | 30 31 34 | sylancl | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> if ( 0 <_ y , y , 0 ) < +oo ) |
| 36 | xrre2 | |- ( ( ( -oo e. RR* /\ if ( 0 <_ y , y , 0 ) e. RR* /\ +oo e. RR* ) /\ ( -oo < if ( 0 <_ y , y , 0 ) /\ if ( 0 <_ y , y , 0 ) < +oo ) ) -> if ( 0 <_ y , y , 0 ) e. RR ) |
|
| 37 | 13 17 19 23 35 36 | syl32anc | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> if ( 0 <_ y , y , 0 ) e. RR ) |
| 38 | xrmax2 | |- ( ( 0 e. RR* /\ y e. RR* ) -> y <_ if ( 0 <_ y , y , 0 ) ) |
|
| 39 | 15 14 38 | sylancr | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> y <_ if ( 0 <_ y , y , 0 ) ) |
| 40 | df-ioc | |- (,] = ( a e. RR* , b e. RR* |-> { c e. RR* | ( a < c /\ c <_ b ) } ) |
|
| 41 | xrlelttr | |- ( ( y e. RR* /\ if ( 0 <_ y , y , 0 ) e. RR* /\ x e. RR* ) -> ( ( y <_ if ( 0 <_ y , y , 0 ) /\ if ( 0 <_ y , y , 0 ) < x ) -> y < x ) ) |
|
| 42 | 40 40 41 | ixxss1 | |- ( ( y e. RR* /\ y <_ if ( 0 <_ y , y , 0 ) ) -> ( if ( 0 <_ y , y , 0 ) (,] +oo ) C_ ( y (,] +oo ) ) |
| 43 | 14 39 42 | syl2anc | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> ( if ( 0 <_ y , y , 0 ) (,] +oo ) C_ ( y (,] +oo ) ) |
| 44 | simplr | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> u C_ A ) |
|
| 45 | 25 44 | eqsstrrd | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> ( y (,] +oo ) C_ A ) |
| 46 | 43 45 | sstrd | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> ( if ( 0 <_ y , y , 0 ) (,] +oo ) C_ A ) |
| 47 | oveq1 | |- ( x = if ( 0 <_ y , y , 0 ) -> ( x (,] +oo ) = ( if ( 0 <_ y , y , 0 ) (,] +oo ) ) |
|
| 48 | 47 | sseq1d | |- ( x = if ( 0 <_ y , y , 0 ) -> ( ( x (,] +oo ) C_ A <-> ( if ( 0 <_ y , y , 0 ) (,] +oo ) C_ A ) ) |
| 49 | 48 | rspcev | |- ( ( if ( 0 <_ y , y , 0 ) e. RR /\ ( if ( 0 <_ y , y , 0 ) (,] +oo ) C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) |
| 50 | 37 46 49 | syl2anc | |- ( ( ( +oo e. u /\ u C_ A ) /\ ( y e. RR* /\ u = ( y (,] +oo ) ) ) -> E. x e. RR ( x (,] +oo ) C_ A ) |
| 51 | 50 | rexlimdvaa | |- ( ( +oo e. u /\ u C_ A ) -> ( E. y e. RR* u = ( y (,] +oo ) -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 52 | 51 | com12 | |- ( E. y e. RR* u = ( y (,] +oo ) -> ( ( +oo e. u /\ u C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 53 | 11 52 | sylbi | |- ( u e. ran ( y e. RR* |-> ( y (,] +oo ) ) -> ( ( +oo e. u /\ u C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 54 | eqid | |- ( y e. RR* |-> ( -oo [,) y ) ) = ( y e. RR* |-> ( -oo [,) y ) ) |
|
| 55 | 54 | elrnmpt | |- ( u e. _V -> ( u e. ran ( y e. RR* |-> ( -oo [,) y ) ) <-> E. y e. RR* u = ( -oo [,) y ) ) ) |
| 56 | 55 | elv | |- ( u e. ran ( y e. RR* |-> ( -oo [,) y ) ) <-> E. y e. RR* u = ( -oo [,) y ) ) |
| 57 | pnfnlt | |- ( y e. RR* -> -. +oo < y ) |
|
| 58 | elico1 | |- ( ( -oo e. RR* /\ y e. RR* ) -> ( +oo e. ( -oo [,) y ) <-> ( +oo e. RR* /\ -oo <_ +oo /\ +oo < y ) ) ) |
|
| 59 | 12 58 | mpan | |- ( y e. RR* -> ( +oo e. ( -oo [,) y ) <-> ( +oo e. RR* /\ -oo <_ +oo /\ +oo < y ) ) ) |
| 60 | simp3 | |- ( ( +oo e. RR* /\ -oo <_ +oo /\ +oo < y ) -> +oo < y ) |
|
| 61 | 59 60 | biimtrdi | |- ( y e. RR* -> ( +oo e. ( -oo [,) y ) -> +oo < y ) ) |
| 62 | 57 61 | mtod | |- ( y e. RR* -> -. +oo e. ( -oo [,) y ) ) |
| 63 | eleq2 | |- ( u = ( -oo [,) y ) -> ( +oo e. u <-> +oo e. ( -oo [,) y ) ) ) |
|
| 64 | 63 | notbid | |- ( u = ( -oo [,) y ) -> ( -. +oo e. u <-> -. +oo e. ( -oo [,) y ) ) ) |
| 65 | 62 64 | syl5ibrcom | |- ( y e. RR* -> ( u = ( -oo [,) y ) -> -. +oo e. u ) ) |
| 66 | 65 | rexlimiv | |- ( E. y e. RR* u = ( -oo [,) y ) -> -. +oo e. u ) |
| 67 | 66 | pm2.21d | |- ( E. y e. RR* u = ( -oo [,) y ) -> ( +oo e. u -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 68 | 67 | adantrd | |- ( E. y e. RR* u = ( -oo [,) y ) -> ( ( +oo e. u /\ u C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 69 | 56 68 | sylbi | |- ( u e. ran ( y e. RR* |-> ( -oo [,) y ) ) -> ( ( +oo e. u /\ u C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 70 | 53 69 | jaoi | |- ( ( u e. ran ( y e. RR* |-> ( y (,] +oo ) ) \/ u e. ran ( y e. RR* |-> ( -oo [,) y ) ) ) -> ( ( +oo e. u /\ u C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 71 | 8 70 | sylbi | |- ( u e. ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) -> ( ( +oo e. u /\ u C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 72 | pnfnre | |- +oo e/ RR |
|
| 73 | 72 | neli | |- -. +oo e. RR |
| 74 | elssuni | |- ( u e. ran (,) -> u C_ U. ran (,) ) |
|
| 75 | unirnioo | |- RR = U. ran (,) |
|
| 76 | 74 75 | sseqtrrdi | |- ( u e. ran (,) -> u C_ RR ) |
| 77 | 76 | sseld | |- ( u e. ran (,) -> ( +oo e. u -> +oo e. RR ) ) |
| 78 | 73 77 | mtoi | |- ( u e. ran (,) -> -. +oo e. u ) |
| 79 | 78 | pm2.21d | |- ( u e. ran (,) -> ( +oo e. u -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 80 | 79 | adantrd | |- ( u e. ran (,) -> ( ( +oo e. u /\ u C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 81 | 71 80 | jaoi | |- ( ( u e. ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) \/ u e. ran (,) ) -> ( ( +oo e. u /\ u C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 82 | 7 81 | sylbi | |- ( u e. ( ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) u. ran (,) ) -> ( ( +oo e. u /\ u C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) ) |
| 83 | 82 | rexlimiv | |- ( E. u e. ( ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) u. ran (,) ) ( +oo e. u /\ u C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) |
| 84 | 6 83 | syl | |- ( ( A e. ( topGen ` ( ( ran ( y e. RR* |-> ( y (,] +oo ) ) u. ran ( y e. RR* |-> ( -oo [,) y ) ) ) u. ran (,) ) ) /\ +oo e. A ) -> E. x e. RR ( x (,] +oo ) C_ A ) |
| 85 | 5 84 | sylanb | |- ( ( A e. ( ordTop ` <_ ) /\ +oo e. A ) -> E. x e. RR ( x (,] +oo ) C_ A ) |