This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 26-Jun-2011) (Proof shortened by JJ, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rab0 | ⊢ { 𝑥 ∈ ∅ ∣ 𝜑 } = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ ∅ ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ ∅ ∧ 𝜑 ) } | |
| 2 | ab0 | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ ∅ ∧ 𝜑 ) } = ∅ ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ ∅ ∧ 𝜑 ) ) | |
| 3 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 4 | 3 | intnanr | ⊢ ¬ ( 𝑥 ∈ ∅ ∧ 𝜑 ) |
| 5 | 2 4 | mpgbir | ⊢ { 𝑥 ∣ ( 𝑥 ∈ ∅ ∧ 𝜑 ) } = ∅ |
| 6 | 1 5 | eqtri | ⊢ { 𝑥 ∈ ∅ ∣ 𝜑 } = ∅ |