This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for A e/ _V , i.e. for the empty set { A } = (/) resulting in ( pmTrsp(/) ) = (/) . (Contributed by AV, 6-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmtrsn | |- ( pmTrsp ` { A } ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex | |- { A } e. _V |
|
| 2 | eqid | |- ( pmTrsp ` { A } ) = ( pmTrsp ` { A } ) |
|
| 3 | 2 | pmtrfval | |- ( { A } e. _V -> ( pmTrsp ` { A } ) = ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ) |
| 4 | 1 3 | ax-mp | |- ( pmTrsp ` { A } ) = ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) |
| 5 | eqid | |- ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) = ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) |
|
| 6 | 5 | dmmpt | |- dom ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) = { p e. { y e. ~P { A } | y ~~ 2o } | ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) e. _V } |
| 7 | 2on0 | |- 2o =/= (/) |
|
| 8 | ensymb | |- ( (/) ~~ 2o <-> 2o ~~ (/) ) |
|
| 9 | en0 | |- ( 2o ~~ (/) <-> 2o = (/) ) |
|
| 10 | 8 9 | bitri | |- ( (/) ~~ 2o <-> 2o = (/) ) |
| 11 | 7 10 | nemtbir | |- -. (/) ~~ 2o |
| 12 | snnen2o | |- -. { A } ~~ 2o |
|
| 13 | 0ex | |- (/) e. _V |
|
| 14 | breq1 | |- ( y = (/) -> ( y ~~ 2o <-> (/) ~~ 2o ) ) |
|
| 15 | 14 | notbid | |- ( y = (/) -> ( -. y ~~ 2o <-> -. (/) ~~ 2o ) ) |
| 16 | breq1 | |- ( y = { A } -> ( y ~~ 2o <-> { A } ~~ 2o ) ) |
|
| 17 | 16 | notbid | |- ( y = { A } -> ( -. y ~~ 2o <-> -. { A } ~~ 2o ) ) |
| 18 | 13 1 15 17 | ralpr | |- ( A. y e. { (/) , { A } } -. y ~~ 2o <-> ( -. (/) ~~ 2o /\ -. { A } ~~ 2o ) ) |
| 19 | 11 12 18 | mpbir2an | |- A. y e. { (/) , { A } } -. y ~~ 2o |
| 20 | pwsn | |- ~P { A } = { (/) , { A } } |
|
| 21 | 20 | raleqi | |- ( A. y e. ~P { A } -. y ~~ 2o <-> A. y e. { (/) , { A } } -. y ~~ 2o ) |
| 22 | 19 21 | mpbir | |- A. y e. ~P { A } -. y ~~ 2o |
| 23 | rabeq0 | |- ( { y e. ~P { A } | y ~~ 2o } = (/) <-> A. y e. ~P { A } -. y ~~ 2o ) |
|
| 24 | 22 23 | mpbir | |- { y e. ~P { A } | y ~~ 2o } = (/) |
| 25 | 24 | rabeqi | |- { p e. { y e. ~P { A } | y ~~ 2o } | ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) e. _V } = { p e. (/) | ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) e. _V } |
| 26 | rab0 | |- { p e. (/) | ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) e. _V } = (/) |
|
| 27 | 6 25 26 | 3eqtri | |- dom ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) = (/) |
| 28 | mptrel | |- Rel ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) |
|
| 29 | reldm0 | |- ( Rel ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) -> ( ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) = (/) <-> dom ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) = (/) ) ) |
|
| 30 | 28 29 | ax-mp | |- ( ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) = (/) <-> dom ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) = (/) ) |
| 31 | 27 30 | mpbir | |- ( p e. { y e. ~P { A } | y ~~ 2o } |-> ( z e. { A } |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) = (/) |
| 32 | 4 31 | eqtri | |- ( pmTrsp ` { A } ) = (/) |