This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| Assertion | pmtrfval | ⊢ ( 𝐷 ∈ 𝑉 → 𝑇 = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | elex | ⊢ ( 𝐷 ∈ 𝑉 → 𝐷 ∈ V ) | |
| 3 | pweq | ⊢ ( 𝑑 = 𝐷 → 𝒫 𝑑 = 𝒫 𝐷 ) | |
| 4 | 3 | rabeqdv | ⊢ ( 𝑑 = 𝐷 → { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } = { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) |
| 5 | mpteq1 | ⊢ ( 𝑑 = 𝐷 → ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) | |
| 6 | 4 5 | mpteq12dv | ⊢ ( 𝑑 = 𝐷 → ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 7 | df-pmtr | ⊢ pmTrsp = ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) | |
| 8 | vpwex | ⊢ 𝒫 𝑑 ∈ V | |
| 9 | 8 | mptrabex | ⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∈ V |
| 10 | 6 7 9 | fvmpt3i | ⊢ ( 𝐷 ∈ V → ( pmTrsp ‘ 𝐷 ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 11 | 2 10 | syl | ⊢ ( 𝐷 ∈ 𝑉 → ( pmTrsp ‘ 𝐷 ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 12 | 1 11 | eqtrid | ⊢ ( 𝐷 ∈ 𝑉 → 𝑇 = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |