This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The characteristic of a polynomial ring is the characteristic of the underlying ring. (Contributed by Thierry Arnoux, 24-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1chr.1 | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| Assertion | ply1chr | ⊢ ( 𝑅 ∈ CRing → ( chr ‘ 𝑃 ) = ( chr ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1chr.1 | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( od ‘ 𝑃 ) = ( od ‘ 𝑃 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 4 | eqid | ⊢ ( chr ‘ 𝑃 ) = ( chr ‘ 𝑃 ) | |
| 5 | 2 3 4 | chrval | ⊢ ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) = ( chr ‘ 𝑃 ) |
| 6 | eqid | ⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 ) | |
| 9 | 6 7 8 | chrval | ⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( chr ‘ 𝑅 ) |
| 10 | 9 | eqcomi | ⊢ ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) |
| 11 | id | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CRing ) | |
| 12 | 11 | crnggrpd | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Grp ) |
| 13 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 15 | 14 7 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 16 | 13 15 | syl | ⊢ ( 𝑅 ∈ CRing → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 8 | chrcl | ⊢ ( 𝑅 ∈ Ring → ( chr ‘ 𝑅 ) ∈ ℕ0 ) |
| 18 | 13 17 | syl | ⊢ ( 𝑅 ∈ CRing → ( chr ‘ 𝑅 ) ∈ ℕ0 ) |
| 19 | eqid | ⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) | |
| 20 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 21 | 14 6 19 20 | odeq | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( chr ‘ 𝑅 ) ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 22 | 12 16 18 21 | syl3anc | ⊢ ( 𝑅 ∈ CRing → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 23 | 10 22 | mpbii | ⊢ ( 𝑅 ∈ CRing → ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 24 | 23 | r19.21bi | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 25 | eqid | ⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) | |
| 26 | 13 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 27 | 12 | grpmndd | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Mnd ) |
| 28 | 27 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Mnd ) |
| 29 | simpr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 30 | 16 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 31 | 14 19 28 29 30 | mulgnn0cld | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 32 | simpl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ CRing ) | |
| 33 | 14 20 | ring0cl | ⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 | 32 13 33 | 3syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 35 | 1 14 25 26 31 34 | ply1scleq | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 36 | 1 | ply1sca | ⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 38 | 37 | fveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( .g ‘ 𝑅 ) = ( .g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 39 | 38 | oveqd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 40 | 39 | fveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) ) |
| 41 | 1 | ply1assa | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
| 42 | 41 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ AssAlg ) |
| 43 | 37 | fveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 44 | 30 43 | eleqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 45 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 46 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 47 | eqid | ⊢ ( .g ‘ 𝑃 ) = ( .g ‘ 𝑃 ) | |
| 48 | eqid | ⊢ ( .g ‘ ( Scalar ‘ 𝑃 ) ) = ( .g ‘ ( Scalar ‘ 𝑃 ) ) | |
| 49 | 25 45 46 47 48 | asclmulg | ⊢ ( ( 𝑃 ∈ AssAlg ∧ 𝑛 ∈ ℕ0 ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 50 | 42 29 44 49 | syl3anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 51 | 40 50 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 52 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
| 53 | 1 25 20 52 | ply1scl0 | ⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 54 | 32 13 53 | 3syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 55 | 51 54 | eqeq12d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 56 | 24 35 55 | 3bitr2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 57 | 56 | ralrimiva | ⊢ ( 𝑅 ∈ CRing → ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 58 | 1 | ply1crng | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 59 | 58 | crnggrpd | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Grp ) |
| 60 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 61 | 1 25 14 60 | ply1sclcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 62 | 13 16 61 | syl2anc | ⊢ ( 𝑅 ∈ CRing → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 63 | 60 2 47 52 | odeq | ⊢ ( ( 𝑃 ∈ Grp ∧ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( chr ‘ 𝑅 ) ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 64 | 59 62 18 63 | syl3anc | ⊢ ( 𝑅 ∈ CRing → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 65 | 57 64 | mpbird | ⊢ ( 𝑅 ∈ CRing → ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 66 | 1 25 7 3 | ply1scl1 | ⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 67 | 66 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) ) |
| 68 | 13 67 | syl | ⊢ ( 𝑅 ∈ CRing → ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) ) |
| 69 | 65 68 | eqtr2d | ⊢ ( 𝑅 ∈ CRing → ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) = ( chr ‘ 𝑅 ) ) |
| 70 | 5 69 | eqtr3id | ⊢ ( 𝑅 ∈ CRing → ( chr ‘ 𝑃 ) = ( chr ‘ 𝑅 ) ) |