This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the algebra scalar lifting function for (univariate) polynomials applied to a scalar results in a constant polynomial. (Contributed by AV, 27-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| coe1scl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| ply1sclf.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| Assertion | ply1sclcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑆 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1scl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | coe1scl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | ply1sclf.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | 1 2 3 4 | ply1sclf | ⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 ⟶ 𝐵 ) |
| 6 | 5 | ffvelcdmda | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑆 ) ∈ 𝐵 ) |