This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum commutes. (Contributed by Mario Carneiro, 22-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsubg.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmsubg.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | lsmcom2 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsubg.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmsubg.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | simp3 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 4 | 3 | sselda | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ 𝑎 ∈ 𝑇 ) → 𝑎 ∈ ( 𝑍 ‘ 𝑈 ) ) |
| 5 | 4 | adantrr | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ ( 𝑍 ‘ 𝑈 ) ) |
| 6 | simprr | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑈 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | 7 2 | cntzi | ⊢ ( ( 𝑎 ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝑏 ∈ 𝑈 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) |
| 9 | 5 6 8 | syl2anc | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) |
| 10 | 9 | eqeq2d | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ↔ 𝑥 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
| 11 | 10 | 2rexbidva | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ↔ ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
| 12 | rexcom | ⊢ ( ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ↔ ∃ 𝑏 ∈ 𝑈 ∃ 𝑎 ∈ 𝑇 𝑥 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) | |
| 13 | 11 12 | bitrdi | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ↔ ∃ 𝑏 ∈ 𝑈 ∃ 𝑎 ∈ 𝑇 𝑥 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
| 14 | 7 1 | lsmelval | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ) ) |
| 16 | 7 1 | lsmelval | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑈 ⊕ 𝑇 ) ↔ ∃ 𝑏 ∈ 𝑈 ∃ 𝑎 ∈ 𝑇 𝑥 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
| 17 | 16 | ancoms | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑈 ⊕ 𝑇 ) ↔ ∃ 𝑏 ∈ 𝑈 ∃ 𝑎 ∈ 𝑇 𝑥 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
| 18 | 17 | 3adant3 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑥 ∈ ( 𝑈 ⊕ 𝑇 ) ↔ ∃ 𝑏 ∈ 𝑈 ∃ 𝑎 ∈ 𝑇 𝑥 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑎 ) ) ) |
| 19 | 13 15 18 | 3bitr4d | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑥 ∈ ( 𝑈 ⊕ 𝑇 ) ) ) |
| 20 | 19 | eqrdv | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |