This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1fval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| pj1fval.a | ⊢ + = ( +g ‘ 𝐺 ) | ||
| pj1fval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| pj1fval.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | ||
| Assertion | pj1val | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1fval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | pj1fval.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | pj1fval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 4 | pj1fval.p | ⊢ 𝑃 = ( proj1 ‘ 𝐺 ) | |
| 5 | 1 2 3 4 | pj1fval | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
| 7 | simpr | ⊢ ( ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → 𝑧 = 𝑋 ) | |
| 8 | 7 | eqeq1d | ⊢ ( ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → ( 𝑧 = ( 𝑥 + 𝑦 ) ↔ 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → ( ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
| 10 | 9 | riotabidv | ⊢ ( ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) = ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
| 11 | simpr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) | |
| 12 | riotaex | ⊢ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ∈ V | |
| 13 | 12 | a1i | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ∈ V ) |
| 14 | 6 10 11 13 | fvmptd | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |