This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| Assertion | pj1eu | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ∃! 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1eu.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | pj1eu.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | pj1eu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | pj1eu.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | pj1eu.2 | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | pj1eu.3 | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | pj1eu.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 8 | pj1eu.5 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 9 | 1 2 | lsmelval | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
| 10 | 5 6 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ) |
| 11 | 10 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) |
| 12 | reeanv | ⊢ ( ∃ 𝑦 ∈ 𝑈 ∃ 𝑣 ∈ 𝑈 ( 𝑋 = ( 𝑥 + 𝑦 ) ∧ 𝑋 = ( 𝑢 + 𝑣 ) ) ↔ ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑋 = ( 𝑢 + 𝑣 ) ) ) | |
| 13 | eqtr2 | ⊢ ( ( 𝑋 = ( 𝑥 + 𝑦 ) ∧ 𝑋 = ( 𝑢 + 𝑣 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) | |
| 14 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 17 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 18 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑇 ) | |
| 19 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → 𝑢 ∈ 𝑇 ) | |
| 20 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) | |
| 21 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → 𝑣 ∈ 𝑈 ) | |
| 22 | 1 3 4 14 15 16 17 18 19 20 21 | subgdisjb | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → ( ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ↔ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) ) |
| 23 | simpl | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 = 𝑢 ) | |
| 24 | 22 23 | biimtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → ( ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) → 𝑥 = 𝑢 ) ) |
| 25 | 13 24 | syl5 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑣 ∈ 𝑈 ) ) → ( ( 𝑋 = ( 𝑥 + 𝑦 ) ∧ 𝑋 = ( 𝑢 + 𝑣 ) ) → 𝑥 = 𝑢 ) ) |
| 26 | 25 | rexlimdvva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) → ( ∃ 𝑦 ∈ 𝑈 ∃ 𝑣 ∈ 𝑈 ( 𝑋 = ( 𝑥 + 𝑦 ) ∧ 𝑋 = ( 𝑢 + 𝑣 ) ) → 𝑥 = 𝑢 ) ) |
| 27 | 12 26 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑢 ∈ 𝑇 ) ) → ( ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑋 = ( 𝑢 + 𝑣 ) ) → 𝑥 = 𝑢 ) ) |
| 28 | 27 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑇 ∀ 𝑢 ∈ 𝑇 ( ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑋 = ( 𝑢 + 𝑣 ) ) → 𝑥 = 𝑢 ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ∀ 𝑥 ∈ 𝑇 ∀ 𝑢 ∈ 𝑇 ( ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑋 = ( 𝑢 + 𝑣 ) ) → 𝑥 = 𝑢 ) ) |
| 30 | oveq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑦 ) ) | |
| 31 | 30 | eqeq2d | ⊢ ( 𝑥 = 𝑢 → ( 𝑋 = ( 𝑥 + 𝑦 ) ↔ 𝑋 = ( 𝑢 + 𝑦 ) ) ) |
| 32 | 31 | rexbidv | ⊢ ( 𝑥 = 𝑢 → ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑢 + 𝑦 ) ) ) |
| 33 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑢 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) | |
| 34 | 33 | eqeq2d | ⊢ ( 𝑦 = 𝑣 → ( 𝑋 = ( 𝑢 + 𝑦 ) ↔ 𝑋 = ( 𝑢 + 𝑣 ) ) ) |
| 35 | 34 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑢 + 𝑦 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑋 = ( 𝑢 + 𝑣 ) ) |
| 36 | 32 35 | bitrdi | ⊢ ( 𝑥 = 𝑢 → ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑋 = ( 𝑢 + 𝑣 ) ) ) |
| 37 | 36 | reu4 | ⊢ ( ∃! 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ↔ ( ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑇 ∀ 𝑢 ∈ 𝑇 ( ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑋 = ( 𝑢 + 𝑣 ) ) → 𝑥 = 𝑢 ) ) ) |
| 38 | 11 29 37 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ∃! 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) |