This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovoliun . (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovoliun.t | ⊢ 𝑇 = seq 1 ( + , 𝐺 ) | |
| ovoliun.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) | ||
| ovoliun.a | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) | ||
| ovoliun.v | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | ||
| ovoliun.r | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) | ||
| ovoliun.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| Assertion | ovoliunlem3 | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovoliun.t | ⊢ 𝑇 = seq 1 ( + , 𝐺 ) | |
| 2 | ovoliun.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) | |
| 3 | ovoliun.a | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) | |
| 4 | ovoliun.v | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | ovoliun.r | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) | |
| 6 | ovoliun.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑚 𝐴 | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 | |
| 9 | csbeq1a | ⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) | |
| 10 | 7 8 9 | cbviun | ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
| 11 | 10 | fveq2i | ⊢ ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 12 | 2nn | ⊢ 2 ∈ ℕ | |
| 13 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 14 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 16 | 15 | nnrpd | ⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℝ+ ) |
| 17 | rpdivcl | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ ( 2 ↑ 𝑛 ) ∈ ℝ+ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) | |
| 18 | 6 16 17 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) |
| 19 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) | |
| 20 | 19 | ovolgelb | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 21 | 3 4 18 20 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 22 | 21 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 23 | ovex | ⊢ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∈ V | |
| 24 | nnenom | ⊢ ℕ ≈ ω | |
| 25 | coeq2 | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( (,) ∘ 𝑓 ) = ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 26 | 25 | rneqd | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ran ( (,) ∘ 𝑓 ) = ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 27 | 26 | unieqd | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ∪ ran ( (,) ∘ 𝑓 ) = ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 28 | 27 | sseq2d | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ↔ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 29 | coeq2 | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) | |
| 30 | 29 | seqeq3d | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 31 | 30 | rneqd | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 32 | 31 | supeq1d | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 33 | 32 | breq1d | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ↔ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 34 | 28 33 | anbi12d | ⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 35 | 23 24 34 | axcc4 | ⊢ ( ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 36 | 22 35 | syl | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 37 | xpnnen | ⊢ ( ℕ × ℕ ) ≈ ℕ | |
| 38 | 37 | ensymi | ⊢ ℕ ≈ ( ℕ × ℕ ) |
| 39 | bren | ⊢ ( ℕ ≈ ( ℕ × ℕ ) ↔ ∃ 𝑗 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) | |
| 40 | 38 39 | mpbi | ⊢ ∃ 𝑗 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) |
| 41 | nfcv | ⊢ Ⅎ 𝑚 ( vol* ‘ 𝐴 ) | |
| 42 | nfcv | ⊢ Ⅎ 𝑛 vol* | |
| 43 | 42 8 | nffv | ⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 44 | 9 | fveq2d | ⊢ ( 𝑛 = 𝑚 → ( vol* ‘ 𝐴 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 45 | 41 43 44 | cbvmpt | ⊢ ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 46 | 2 45 | eqtri | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 47 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ) |
| 48 | nfv | ⊢ Ⅎ 𝑚 𝐴 ⊆ ℝ | |
| 49 | nfcv | ⊢ Ⅎ 𝑛 ℝ | |
| 50 | 8 49 | nfss | ⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ |
| 51 | 9 | sseq1d | ⊢ ( 𝑛 = 𝑚 → ( 𝐴 ⊆ ℝ ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) ) |
| 52 | 48 50 51 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 53 | 47 52 | sylib | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 54 | 53 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 55 | 54 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 56 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 57 | 41 | nfel1 | ⊢ Ⅎ 𝑚 ( vol* ‘ 𝐴 ) ∈ ℝ |
| 58 | 43 | nfel1 | ⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ |
| 59 | 44 | eleq1d | ⊢ ( 𝑛 = 𝑚 → ( ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) ) |
| 60 | 57 58 59 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 61 | 56 60 | sylib | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 62 | 61 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 63 | 62 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 64 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 65 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → 𝐵 ∈ ℝ+ ) |
| 66 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) | |
| 67 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗 ‘ 𝑘 ) ) ) ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗 ‘ 𝑘 ) ) ) ) ) ) | |
| 68 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗 ‘ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗 ‘ 𝑘 ) ) ) ) | |
| 69 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) | |
| 70 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 71 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) | |
| 72 | nfv | ⊢ Ⅎ 𝑚 ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 73 | nfcv | ⊢ Ⅎ 𝑛 ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) | |
| 74 | 8 73 | nfss | ⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) |
| 75 | nfcv | ⊢ Ⅎ 𝑛 sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) | |
| 76 | nfcv | ⊢ Ⅎ 𝑛 ≤ | |
| 77 | nfcv | ⊢ Ⅎ 𝑛 + | |
| 78 | nfcv | ⊢ Ⅎ 𝑛 ( 𝐵 / ( 2 ↑ 𝑚 ) ) | |
| 79 | 43 77 78 | nfov | ⊢ Ⅎ 𝑛 ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) |
| 80 | 75 76 79 | nfbr | ⊢ Ⅎ 𝑛 sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) |
| 81 | 74 80 | nfan | ⊢ Ⅎ 𝑛 ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) |
| 82 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑚 ) ) | |
| 83 | 82 | coeq2d | ⊢ ( 𝑛 = 𝑚 → ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) = ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 84 | 83 | rneqd | ⊢ ( 𝑛 = 𝑚 → ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) = ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 85 | 84 | unieqd | ⊢ ( 𝑛 = 𝑚 → ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) = ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 86 | 9 85 | sseq12d | ⊢ ( 𝑛 = 𝑚 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 87 | 82 | coeq2d | ⊢ ( 𝑛 = 𝑚 → ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) = ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 88 | 87 | seqeq3d | ⊢ ( 𝑛 = 𝑚 → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 89 | 88 | rneqd | ⊢ ( 𝑛 = 𝑚 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) = ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 90 | 89 | supeq1d | ⊢ ( 𝑛 = 𝑚 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
| 91 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑚 ) ) | |
| 92 | 91 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) |
| 93 | 44 92 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) = ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) |
| 94 | 90 93 | breq12d | ⊢ ( 𝑛 = 𝑚 → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ↔ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) |
| 95 | 86 94 | anbi12d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) ) |
| 96 | 72 81 95 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ∀ 𝑚 ∈ ℕ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) |
| 97 | 71 96 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ∀ 𝑚 ∈ ℕ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) |
| 98 | 97 | r19.21bi | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) |
| 99 | 98 | simpld | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 100 | 98 | simprd | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) |
| 101 | 1 46 55 63 64 65 66 67 68 69 70 99 100 | ovoliunlem2 | ⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
| 102 | 101 | exp31 | ⊢ ( 𝜑 → ( 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) → ( ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) ) ) |
| 103 | 102 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑗 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) → ( ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) ) ) |
| 104 | 40 103 | mpi | ⊢ ( 𝜑 → ( ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) ) |
| 105 | 104 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) ) |
| 106 | 36 105 | mpd | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
| 107 | 11 106 | eqbrtrid | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |