This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Without assuming ax-rep , we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfr.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| Assertion | tfr2b | ⊢ ( Ord 𝐴 → ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐹 ↾ 𝐴 ) ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordeleqon | ⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) | |
| 3 | eqid | ⊢ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ 𝑦 ) ) ) } | |
| 4 | 3 | tfrlem15 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ dom recs ( 𝐺 ) ↔ ( recs ( 𝐺 ) ↾ 𝐴 ) ∈ V ) ) |
| 5 | 1 | dmeqi | ⊢ dom 𝐹 = dom recs ( 𝐺 ) |
| 6 | 5 | eleq2i | ⊢ ( 𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ dom recs ( 𝐺 ) ) |
| 7 | 1 | reseq1i | ⊢ ( 𝐹 ↾ 𝐴 ) = ( recs ( 𝐺 ) ↾ 𝐴 ) |
| 8 | 7 | eleq1i | ⊢ ( ( 𝐹 ↾ 𝐴 ) ∈ V ↔ ( recs ( 𝐺 ) ↾ 𝐴 ) ∈ V ) |
| 9 | 4 6 8 | 3bitr4g | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐹 ↾ 𝐴 ) ∈ V ) ) |
| 10 | onprc | ⊢ ¬ On ∈ V | |
| 11 | elex | ⊢ ( On ∈ dom 𝐹 → On ∈ V ) | |
| 12 | 10 11 | mto | ⊢ ¬ On ∈ dom 𝐹 |
| 13 | eleq1 | ⊢ ( 𝐴 = On → ( 𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹 ) ) | |
| 14 | 12 13 | mtbiri | ⊢ ( 𝐴 = On → ¬ 𝐴 ∈ dom 𝐹 ) |
| 15 | 3 | tfrlem13 | ⊢ ¬ recs ( 𝐺 ) ∈ V |
| 16 | 1 15 | eqneltri | ⊢ ¬ 𝐹 ∈ V |
| 17 | reseq2 | ⊢ ( 𝐴 = On → ( 𝐹 ↾ 𝐴 ) = ( 𝐹 ↾ On ) ) | |
| 18 | 1 | tfr1a | ⊢ ( Fun 𝐹 ∧ Lim dom 𝐹 ) |
| 19 | 18 | simpli | ⊢ Fun 𝐹 |
| 20 | funrel | ⊢ ( Fun 𝐹 → Rel 𝐹 ) | |
| 21 | 19 20 | ax-mp | ⊢ Rel 𝐹 |
| 22 | 18 | simpri | ⊢ Lim dom 𝐹 |
| 23 | limord | ⊢ ( Lim dom 𝐹 → Ord dom 𝐹 ) | |
| 24 | ordsson | ⊢ ( Ord dom 𝐹 → dom 𝐹 ⊆ On ) | |
| 25 | 22 23 24 | mp2b | ⊢ dom 𝐹 ⊆ On |
| 26 | relssres | ⊢ ( ( Rel 𝐹 ∧ dom 𝐹 ⊆ On ) → ( 𝐹 ↾ On ) = 𝐹 ) | |
| 27 | 21 25 26 | mp2an | ⊢ ( 𝐹 ↾ On ) = 𝐹 |
| 28 | 17 27 | eqtrdi | ⊢ ( 𝐴 = On → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 29 | 28 | eleq1d | ⊢ ( 𝐴 = On → ( ( 𝐹 ↾ 𝐴 ) ∈ V ↔ 𝐹 ∈ V ) ) |
| 30 | 16 29 | mtbiri | ⊢ ( 𝐴 = On → ¬ ( 𝐹 ↾ 𝐴 ) ∈ V ) |
| 31 | 14 30 | 2falsed | ⊢ ( 𝐴 = On → ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐹 ↾ 𝐴 ) ∈ V ) ) |
| 32 | 9 31 | jaoi | ⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐹 ↾ 𝐴 ) ∈ V ) ) |
| 33 | 2 32 | sylbi | ⊢ ( Ord 𝐴 → ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐹 ↾ 𝐴 ) ∈ V ) ) |