This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | ||
| ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | ||
| ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | ||
| ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | ||
| ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | ||
| ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | ||
| Assertion | ordtypelem8 | ⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 3 | ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | |
| 4 | ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 5 | ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | |
| 6 | ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | |
| 7 | ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | |
| 8 | 1 2 3 4 5 6 7 | ordtypelem4 | ⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
| 9 | 8 | fdmd | ⊢ ( 𝜑 → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
| 10 | inss1 | ⊢ ( 𝑇 ∩ dom 𝐹 ) ⊆ 𝑇 | |
| 11 | 1 2 3 4 5 6 7 | ordtypelem2 | ⊢ ( 𝜑 → Ord 𝑇 ) |
| 12 | ordsson | ⊢ ( Ord 𝑇 → 𝑇 ⊆ On ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ On ) |
| 14 | 10 13 | sstrid | ⊢ ( 𝜑 → ( 𝑇 ∩ dom 𝐹 ) ⊆ On ) |
| 15 | 9 14 | eqsstrd | ⊢ ( 𝜑 → dom 𝑂 ⊆ On ) |
| 16 | epweon | ⊢ E We On | |
| 17 | weso | ⊢ ( E We On → E Or On ) | |
| 18 | 16 17 | ax-mp | ⊢ E Or On |
| 19 | soss | ⊢ ( dom 𝑂 ⊆ On → ( E Or On → E Or dom 𝑂 ) ) | |
| 20 | 15 18 19 | mpisyl | ⊢ ( 𝜑 → E Or dom 𝑂 ) |
| 21 | 8 | frnd | ⊢ ( 𝜑 → ran 𝑂 ⊆ 𝐴 ) |
| 22 | wess | ⊢ ( ran 𝑂 ⊆ 𝐴 → ( 𝑅 We 𝐴 → 𝑅 We ran 𝑂 ) ) | |
| 23 | 21 6 22 | sylc | ⊢ ( 𝜑 → 𝑅 We ran 𝑂 ) |
| 24 | weso | ⊢ ( 𝑅 We ran 𝑂 → 𝑅 Or ran 𝑂 ) | |
| 25 | sopo | ⊢ ( 𝑅 Or ran 𝑂 → 𝑅 Po ran 𝑂 ) | |
| 26 | 23 24 25 | 3syl | ⊢ ( 𝜑 → 𝑅 Po ran 𝑂 ) |
| 27 | 8 | ffund | ⊢ ( 𝜑 → Fun 𝑂 ) |
| 28 | funforn | ⊢ ( Fun 𝑂 ↔ 𝑂 : dom 𝑂 –onto→ ran 𝑂 ) | |
| 29 | 27 28 | sylib | ⊢ ( 𝜑 → 𝑂 : dom 𝑂 –onto→ ran 𝑂 ) |
| 30 | epel | ⊢ ( 𝑎 E 𝑏 ↔ 𝑎 ∈ 𝑏 ) | |
| 31 | 1 2 3 4 5 6 7 | ordtypelem6 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ dom 𝑂 ) → ( 𝑎 ∈ 𝑏 → ( 𝑂 ‘ 𝑎 ) 𝑅 ( 𝑂 ‘ 𝑏 ) ) ) |
| 32 | 30 31 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ dom 𝑂 ) → ( 𝑎 E 𝑏 → ( 𝑂 ‘ 𝑎 ) 𝑅 ( 𝑂 ‘ 𝑏 ) ) ) |
| 33 | 32 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑏 ∈ dom 𝑂 ( 𝑎 E 𝑏 → ( 𝑂 ‘ 𝑎 ) 𝑅 ( 𝑂 ‘ 𝑏 ) ) ) |
| 34 | 33 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑂 ∀ 𝑏 ∈ dom 𝑂 ( 𝑎 E 𝑏 → ( 𝑂 ‘ 𝑎 ) 𝑅 ( 𝑂 ‘ 𝑏 ) ) ) |
| 35 | soisoi | ⊢ ( ( ( E Or dom 𝑂 ∧ 𝑅 Po ran 𝑂 ) ∧ ( 𝑂 : dom 𝑂 –onto→ ran 𝑂 ∧ ∀ 𝑎 ∈ dom 𝑂 ∀ 𝑏 ∈ dom 𝑂 ( 𝑎 E 𝑏 → ( 𝑂 ‘ 𝑎 ) 𝑅 ( 𝑂 ‘ 𝑏 ) ) ) ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ) | |
| 36 | 20 26 29 34 35 | syl22anc | ⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ) |