This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . ran O is an initial segment of A under the well-order R . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | ||
| ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | ||
| ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | ||
| ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | ||
| ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | ||
| ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | ||
| Assertion | ordtypelem7 | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝐴 ) ∧ 𝑀 ∈ dom 𝑂 ) → ( ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ∨ 𝑁 ∈ ran 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 3 | ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | |
| 4 | ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 5 | ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | |
| 6 | ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | |
| 7 | ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | |
| 8 | eldif | ⊢ ( 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ↔ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂 ) ) | |
| 9 | 1 2 3 4 5 6 7 | ordtypelem4 | ⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
| 11 | 10 | fdmd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
| 12 | inss1 | ⊢ ( 𝑇 ∩ dom 𝐹 ) ⊆ 𝑇 | |
| 13 | 1 2 3 4 5 6 7 | ordtypelem2 | ⊢ ( 𝜑 → Ord 𝑇 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → Ord 𝑇 ) |
| 15 | ordsson | ⊢ ( Ord 𝑇 → 𝑇 ⊆ On ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → 𝑇 ⊆ On ) |
| 17 | 12 16 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑇 ∩ dom 𝐹 ) ⊆ On ) |
| 18 | 11 17 | eqsstrd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → dom 𝑂 ⊆ On ) |
| 19 | 18 | sseld | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → 𝑀 ∈ On ) ) |
| 20 | eleq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ dom 𝑂 ↔ 𝑏 ∈ dom 𝑂 ) ) | |
| 21 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑂 ‘ 𝑎 ) = ( 𝑂 ‘ 𝑏 ) ) | |
| 22 | 21 | breq1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ↔ ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
| 23 | 20 22 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ↔ ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) ) ) |
| 25 | eleq1 | ⊢ ( 𝑎 = 𝑀 → ( 𝑎 ∈ dom 𝑂 ↔ 𝑀 ∈ dom 𝑂 ) ) | |
| 26 | fveq2 | ⊢ ( 𝑎 = 𝑀 → ( 𝑂 ‘ 𝑎 ) = ( 𝑂 ‘ 𝑀 ) ) | |
| 27 | 26 | breq1d | ⊢ ( 𝑎 = 𝑀 → ( ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ↔ ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
| 28 | 25 27 | imbi12d | ⊢ ( 𝑎 = 𝑀 → ( ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ↔ ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑎 = 𝑀 → ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) ) ) |
| 30 | r19.21v | ⊢ ( ∀ 𝑏 ∈ 𝑎 ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) ) | |
| 31 | 1 | tfr1a | ⊢ ( Fun 𝐹 ∧ Lim dom 𝐹 ) |
| 32 | 31 | simpri | ⊢ Lim dom 𝐹 |
| 33 | limord | ⊢ ( Lim dom 𝐹 → Ord dom 𝐹 ) | |
| 34 | 32 33 | ax-mp | ⊢ Ord dom 𝐹 |
| 35 | ordin | ⊢ ( ( Ord 𝑇 ∧ Ord dom 𝐹 ) → Ord ( 𝑇 ∩ dom 𝐹 ) ) | |
| 36 | 14 34 35 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → Ord ( 𝑇 ∩ dom 𝐹 ) ) |
| 37 | ordeq | ⊢ ( dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) → ( Ord dom 𝑂 ↔ Ord ( 𝑇 ∩ dom 𝐹 ) ) ) | |
| 38 | 11 37 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( Ord dom 𝑂 ↔ Ord ( 𝑇 ∩ dom 𝐹 ) ) ) |
| 39 | 36 38 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → Ord dom 𝑂 ) |
| 40 | ordelss | ⊢ ( ( Ord dom 𝑂 ∧ 𝑎 ∈ dom 𝑂 ) → 𝑎 ⊆ dom 𝑂 ) | |
| 41 | 39 40 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) → 𝑎 ⊆ dom 𝑂 ) |
| 42 | 41 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ dom 𝑂 ) |
| 43 | pm5.5 | ⊢ ( 𝑏 ∈ dom 𝑂 → ( ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ↔ ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) | |
| 44 | 42 43 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) ∧ 𝑏 ∈ 𝑎 ) → ( ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ↔ ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
| 45 | 44 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ↔ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
| 46 | eldifn | ⊢ ( 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) → ¬ 𝑁 ∈ ran 𝑂 ) | |
| 47 | 46 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ¬ 𝑁 ∈ ran 𝑂 ) |
| 48 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
| 49 | 48 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑂 Fn ( 𝑇 ∩ dom 𝐹 ) ) |
| 50 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ∈ dom 𝑂 ) | |
| 51 | 48 | fdmd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
| 52 | 50 51 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) |
| 53 | fnfvelrn | ⊢ ( ( 𝑂 Fn ( 𝑇 ∩ dom 𝐹 ) ∧ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝑂 ‘ 𝑎 ) ∈ ran 𝑂 ) | |
| 54 | 49 52 53 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) ∈ ran 𝑂 ) |
| 55 | eleq1 | ⊢ ( ( 𝑂 ‘ 𝑎 ) = 𝑁 → ( ( 𝑂 ‘ 𝑎 ) ∈ ran 𝑂 ↔ 𝑁 ∈ ran 𝑂 ) ) | |
| 56 | 54 55 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝑂 ‘ 𝑎 ) = 𝑁 → 𝑁 ∈ ran 𝑂 ) ) |
| 57 | 47 56 | mtod | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ¬ ( 𝑂 ‘ 𝑎 ) = 𝑁 ) |
| 58 | breq1 | ⊢ ( 𝑢 = 𝑁 → ( 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ↔ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) | |
| 59 | 58 | notbid | ⊢ ( 𝑢 = 𝑁 → ( ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ↔ ¬ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
| 60 | 1 2 3 4 5 6 7 | ordtypelem1 | ⊢ ( 𝜑 → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |
| 61 | 60 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |
| 62 | 61 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) = ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑎 ) ) |
| 63 | 52 | elin1d | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ∈ 𝑇 ) |
| 64 | 63 | fvresd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 65 | 62 64 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 66 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝜑 ) | |
| 67 | 1 2 3 4 5 6 7 | ordtypelem3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
| 68 | 66 52 67 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
| 69 | 65 68 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
| 70 | breq2 | ⊢ ( 𝑣 = ( 𝑂 ‘ 𝑎 ) → ( 𝑢 𝑅 𝑣 ↔ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) | |
| 71 | 70 | notbid | ⊢ ( 𝑣 = ( 𝑂 ‘ 𝑎 ) → ( ¬ 𝑢 𝑅 𝑣 ↔ ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
| 72 | 71 | ralbidv | ⊢ ( 𝑣 = ( 𝑂 ‘ 𝑎 ) → ( ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ↔ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
| 73 | 72 | elrab | ⊢ ( ( 𝑂 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ↔ ( ( 𝑂 ‘ 𝑎 ) ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∧ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
| 74 | 73 | simprbi | ⊢ ( ( 𝑂 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } → ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) |
| 75 | 69 74 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) |
| 76 | breq2 | ⊢ ( 𝑤 = 𝑁 → ( 𝑗 𝑅 𝑤 ↔ 𝑗 𝑅 𝑁 ) ) | |
| 77 | 76 | ralbidv | ⊢ ( 𝑤 = 𝑁 → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 ↔ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑁 ) ) |
| 78 | eldifi | ⊢ ( 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) → 𝑁 ∈ 𝐴 ) | |
| 79 | 78 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑁 ∈ 𝐴 ) |
| 80 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) | |
| 81 | 41 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ⊆ dom 𝑂 ) |
| 82 | 48 81 | fssdmd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ⊆ ( 𝑇 ∩ dom 𝐹 ) ) |
| 83 | 82 12 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ⊆ 𝑇 ) |
| 84 | fveq1 | ⊢ ( 𝑂 = ( 𝐹 ↾ 𝑇 ) → ( 𝑂 ‘ 𝑏 ) = ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑏 ) ) | |
| 85 | ssel2 | ⊢ ( ( 𝑎 ⊆ 𝑇 ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝑇 ) | |
| 86 | 85 | fvresd | ⊢ ( ( 𝑎 ⊆ 𝑇 ∧ 𝑏 ∈ 𝑎 ) → ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 87 | 84 86 | sylan9eq | ⊢ ( ( 𝑂 = ( 𝐹 ↾ 𝑇 ) ∧ ( 𝑎 ⊆ 𝑇 ∧ 𝑏 ∈ 𝑎 ) ) → ( 𝑂 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 88 | 87 | anassrs | ⊢ ( ( ( 𝑂 = ( 𝐹 ↾ 𝑇 ) ∧ 𝑎 ⊆ 𝑇 ) ∧ 𝑏 ∈ 𝑎 ) → ( 𝑂 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 89 | 88 | breq1d | ⊢ ( ( ( 𝑂 = ( 𝐹 ↾ 𝑇 ) ∧ 𝑎 ⊆ 𝑇 ) ∧ 𝑏 ∈ 𝑎 ) → ( ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ↔ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
| 90 | 89 | ralbidva | ⊢ ( ( 𝑂 = ( 𝐹 ↾ 𝑇 ) ∧ 𝑎 ⊆ 𝑇 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ↔ ∀ 𝑏 ∈ 𝑎 ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
| 91 | 61 83 90 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ↔ ∀ 𝑏 ∈ 𝑎 ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
| 92 | 80 91 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ∀ 𝑏 ∈ 𝑎 ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) |
| 93 | 31 | simpli | ⊢ Fun 𝐹 |
| 94 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
| 95 | 93 94 | mpbi | ⊢ 𝐹 Fn dom 𝐹 |
| 96 | inss2 | ⊢ ( 𝑇 ∩ dom 𝐹 ) ⊆ dom 𝐹 | |
| 97 | 82 96 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ⊆ dom 𝐹 ) |
| 98 | breq1 | ⊢ ( 𝑗 = ( 𝐹 ‘ 𝑏 ) → ( 𝑗 𝑅 𝑁 ↔ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) | |
| 99 | 98 | ralima | ⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝑎 ⊆ dom 𝐹 ) → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑁 ↔ ∀ 𝑏 ∈ 𝑎 ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
| 100 | 95 97 99 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑁 ↔ ∀ 𝑏 ∈ 𝑎 ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
| 101 | 92 100 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑁 ) |
| 102 | 77 79 101 | elrabd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑁 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ) |
| 103 | 59 75 102 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ¬ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) |
| 104 | weso | ⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) | |
| 105 | 6 104 | syl | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
| 106 | 105 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑅 Or 𝐴 ) |
| 107 | 48 52 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) ∈ 𝐴 ) |
| 108 | sotric | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( ( 𝑂 ‘ 𝑎 ) ∈ 𝐴 ∧ 𝑁 ∈ 𝐴 ) ) → ( ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ↔ ¬ ( ( 𝑂 ‘ 𝑎 ) = 𝑁 ∨ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) ) | |
| 109 | 106 107 79 108 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ↔ ¬ ( ( 𝑂 ‘ 𝑎 ) = 𝑁 ∨ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) ) |
| 110 | ioran | ⊢ ( ¬ ( ( 𝑂 ‘ 𝑎 ) = 𝑁 ∨ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ↔ ( ¬ ( 𝑂 ‘ 𝑎 ) = 𝑁 ∧ ¬ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) | |
| 111 | 109 110 | bitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ↔ ( ¬ ( 𝑂 ‘ 𝑎 ) = 𝑁 ∧ ¬ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) ) |
| 112 | 57 103 111 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) |
| 113 | 112 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) |
| 114 | 45 113 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) |
| 115 | 114 | ex | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ) |
| 116 | 115 | com23 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ) |
| 117 | 116 | a2i | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ) |
| 118 | 117 | a1i | ⊢ ( 𝑎 ∈ On → ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ) ) |
| 119 | 30 118 | biimtrid | ⊢ ( 𝑎 ∈ On → ( ∀ 𝑏 ∈ 𝑎 ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ) ) |
| 120 | 24 29 119 | tfis3 | ⊢ ( 𝑀 ∈ On → ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) ) |
| 121 | 120 | com3l | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑀 ∈ On → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) ) |
| 122 | 19 121 | mpdd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
| 123 | 8 122 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
| 124 | 123 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝐴 ) ∧ ¬ 𝑁 ∈ ran 𝑂 ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
| 125 | 124 | impancom | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝐴 ) ∧ 𝑀 ∈ dom 𝑂 ) → ( ¬ 𝑁 ∈ ran 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
| 126 | 125 | orrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝐴 ) ∧ 𝑀 ∈ dom 𝑂 ) → ( 𝑁 ∈ ran 𝑂 ∨ ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
| 127 | 126 | orcomd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝐴 ) ∧ 𝑀 ∈ dom 𝑂 ) → ( ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ∨ 𝑁 ∈ ran 𝑂 ) ) |