This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . Using ax-rep , exclude the possibility that O is a proper class and does not enumerate all of A . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | ||
| ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | ||
| ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | ||
| ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | ||
| ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | ||
| ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | ||
| Assertion | ordtypelem10 | ⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 3 | ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | |
| 4 | ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 5 | ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | |
| 6 | ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | |
| 7 | ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | |
| 8 | 1 2 3 4 5 6 7 | ordtypelem8 | ⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ) |
| 9 | 1 2 3 4 5 6 7 | ordtypelem4 | ⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
| 10 | 9 | frnd | ⊢ ( 𝜑 → ran 𝑂 ⊆ 𝐴 ) |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑏 ∈ 𝐴 ) | |
| 12 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑅 We 𝐴 ) |
| 13 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑅 Se 𝐴 ) |
| 14 | 9 | ffund | ⊢ ( 𝜑 → Fun 𝑂 ) |
| 15 | 14 | funfnd | ⊢ ( 𝜑 → 𝑂 Fn dom 𝑂 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑂 Fn dom 𝑂 ) |
| 17 | 1 2 3 4 5 12 13 | ordtypelem8 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ) |
| 18 | isof1o | ⊢ ( 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) → 𝑂 : dom 𝑂 –1-1-onto→ ran 𝑂 ) | |
| 19 | f1of1 | ⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ran 𝑂 → 𝑂 : dom 𝑂 –1-1→ ran 𝑂 ) | |
| 20 | 17 18 19 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑂 : dom 𝑂 –1-1→ ran 𝑂 ) |
| 21 | simpl | ⊢ ( ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) → 𝑏 ∈ 𝐴 ) | |
| 22 | seex | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑏 ∈ 𝐴 ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 𝑅 𝑏 } ∈ V ) | |
| 23 | 7 21 22 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 𝑅 𝑏 } ∈ V ) |
| 24 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ran 𝑂 ⊆ 𝐴 ) |
| 25 | rexnal | ⊢ ( ∃ 𝑚 ∈ dom 𝑂 ¬ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ↔ ¬ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) | |
| 26 | 1 2 3 4 5 6 7 | ordtypelem7 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑚 ∈ dom 𝑂 ) → ( ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ∨ 𝑏 ∈ ran 𝑂 ) ) |
| 27 | 26 | ord | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑚 ∈ dom 𝑂 ) → ( ¬ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 → 𝑏 ∈ ran 𝑂 ) ) |
| 28 | 27 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ∃ 𝑚 ∈ dom 𝑂 ¬ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 → 𝑏 ∈ ran 𝑂 ) ) |
| 29 | 25 28 | biimtrrid | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ¬ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 → 𝑏 ∈ ran 𝑂 ) ) |
| 30 | 29 | con1d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ¬ 𝑏 ∈ ran 𝑂 → ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) |
| 31 | 30 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) |
| 32 | breq1 | ⊢ ( 𝑐 = ( 𝑂 ‘ 𝑚 ) → ( 𝑐 𝑅 𝑏 ↔ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) | |
| 33 | 32 | ralrn | ⊢ ( 𝑂 Fn dom 𝑂 → ( ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ↔ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) |
| 34 | 16 33 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ( ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ↔ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) |
| 35 | 31 34 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ) |
| 36 | ssrab | ⊢ ( ran 𝑂 ⊆ { 𝑐 ∈ 𝐴 ∣ 𝑐 𝑅 𝑏 } ↔ ( ran 𝑂 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ) ) | |
| 37 | 24 35 36 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ran 𝑂 ⊆ { 𝑐 ∈ 𝐴 ∣ 𝑐 𝑅 𝑏 } ) |
| 38 | 23 37 | ssexd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ran 𝑂 ∈ V ) |
| 39 | f1dmex | ⊢ ( ( 𝑂 : dom 𝑂 –1-1→ ran 𝑂 ∧ ran 𝑂 ∈ V ) → dom 𝑂 ∈ V ) | |
| 40 | 20 38 39 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → dom 𝑂 ∈ V ) |
| 41 | 16 40 | fnexd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑂 ∈ V ) |
| 42 | 1 2 3 4 5 12 13 41 | ordtypelem9 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |
| 43 | isof1o | ⊢ ( 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) → 𝑂 : dom 𝑂 –1-1-onto→ 𝐴 ) | |
| 44 | f1ofo | ⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ 𝐴 → 𝑂 : dom 𝑂 –onto→ 𝐴 ) | |
| 45 | forn | ⊢ ( 𝑂 : dom 𝑂 –onto→ 𝐴 → ran 𝑂 = 𝐴 ) | |
| 46 | 42 43 44 45 | 4syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ran 𝑂 = 𝐴 ) |
| 47 | 11 46 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑏 ∈ ran 𝑂 ) |
| 48 | 47 | expr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ¬ 𝑏 ∈ ran 𝑂 → 𝑏 ∈ ran 𝑂 ) ) |
| 49 | 48 | pm2.18d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → 𝑏 ∈ ran 𝑂 ) |
| 50 | 10 49 | eqelssd | ⊢ ( 𝜑 → ran 𝑂 = 𝐴 ) |
| 51 | isoeq5 | ⊢ ( ran 𝑂 = 𝐴 → ( 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ↔ 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) ) | |
| 52 | 50 51 | syl | ⊢ ( 𝜑 → ( 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ↔ 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) ) |
| 53 | 8 52 | mpbid | ⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |