This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | ||
| ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | ||
| ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | ||
| ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | ||
| ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | ||
| ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | ||
| Assertion | ordtypelem4 | ⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 3 | ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | |
| 4 | ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 5 | ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | |
| 6 | ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | |
| 7 | ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | |
| 8 | 1 | tfr1a | ⊢ ( Fun 𝐹 ∧ Lim dom 𝐹 ) |
| 9 | 8 | simpli | ⊢ Fun 𝐹 |
| 10 | funres | ⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ 𝑇 ) ) | |
| 11 | 9 10 | mp1i | ⊢ ( 𝜑 → Fun ( 𝐹 ↾ 𝑇 ) ) |
| 12 | 11 | funfnd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑇 ) Fn dom ( 𝐹 ↾ 𝑇 ) ) |
| 13 | dmres | ⊢ dom ( 𝐹 ↾ 𝑇 ) = ( 𝑇 ∩ dom 𝐹 ) | |
| 14 | 13 | fneq2i | ⊢ ( ( 𝐹 ↾ 𝑇 ) Fn dom ( 𝐹 ↾ 𝑇 ) ↔ ( 𝐹 ↾ 𝑇 ) Fn ( 𝑇 ∩ dom 𝐹 ) ) |
| 15 | 12 14 | sylib | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑇 ) Fn ( 𝑇 ∩ dom 𝐹 ) ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) | |
| 17 | 16 | elin1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → 𝑎 ∈ 𝑇 ) |
| 18 | 17 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 19 | ssrab2 | ⊢ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ⊆ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } | |
| 20 | ssrab2 | ⊢ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ⊆ 𝐴 | |
| 21 | 19 20 | sstri | ⊢ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ⊆ 𝐴 |
| 22 | 1 2 3 4 5 6 7 | ordtypelem3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
| 23 | 21 22 | sselid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐴 ) |
| 24 | 18 23 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑎 ) ∈ 𝐴 ) |
| 25 | 24 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑎 ) ∈ 𝐴 ) |
| 26 | ffnfv | ⊢ ( ( 𝐹 ↾ 𝑇 ) : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ↔ ( ( 𝐹 ↾ 𝑇 ) Fn ( 𝑇 ∩ dom 𝐹 ) ∧ ∀ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑎 ) ∈ 𝐴 ) ) | |
| 27 | 15 25 26 | sylanbrc | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑇 ) : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
| 28 | 1 2 3 4 5 6 7 | ordtypelem1 | ⊢ ( 𝜑 → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |
| 29 | 28 | feq1d | ⊢ ( 𝜑 → ( 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ↔ ( 𝐹 ↾ 𝑇 ) : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) ) |
| 30 | 27 29 | mpbird | ⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |