This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | ||
| ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | ||
| ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | ||
| ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | ||
| ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | ||
| ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | ||
| Assertion | ordtypelem2 | ⊢ ( 𝜑 → Ord 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 3 | ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | |
| 4 | ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 5 | ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | |
| 6 | ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | |
| 7 | ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | |
| 8 | 4 | ssrab3 | ⊢ 𝑇 ⊆ On |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 𝑇 ⊆ On ) |
| 10 | 9 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → 𝑎 ∈ On ) |
| 11 | onss | ⊢ ( 𝑎 ∈ On → 𝑎 ⊆ On ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → 𝑎 ⊆ On ) |
| 13 | eloni | ⊢ ( 𝑎 ∈ On → Ord 𝑎 ) | |
| 14 | 10 13 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → Ord 𝑎 ) |
| 15 | imaeq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑎 ) ) | |
| 16 | 15 | raleqdv | ⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∀ 𝑧 ∈ ( 𝐹 “ 𝑎 ) 𝑧 𝑅 𝑡 ) ) |
| 17 | 16 | rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑎 ) 𝑧 𝑅 𝑡 ) ) |
| 18 | 17 4 | elrab2 | ⊢ ( 𝑎 ∈ 𝑇 ↔ ( 𝑎 ∈ On ∧ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑎 ) 𝑧 𝑅 𝑡 ) ) |
| 19 | 18 | simprbi | ⊢ ( 𝑎 ∈ 𝑇 → ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑎 ) 𝑧 𝑅 𝑡 ) |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑎 ) 𝑧 𝑅 𝑡 ) |
| 21 | ordelss | ⊢ ( ( Ord 𝑎 ∧ 𝑥 ∈ 𝑎 ) → 𝑥 ⊆ 𝑎 ) | |
| 22 | imass2 | ⊢ ( 𝑥 ⊆ 𝑎 → ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑎 ) ) | |
| 23 | ssralv | ⊢ ( ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑎 ) → ( ∀ 𝑧 ∈ ( 𝐹 “ 𝑎 ) 𝑧 𝑅 𝑡 → ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ) ) | |
| 24 | 23 | reximdv | ⊢ ( ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑎 ) → ( ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑎 ) 𝑧 𝑅 𝑡 → ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ) ) |
| 25 | 21 22 24 | 3syl | ⊢ ( ( Ord 𝑎 ∧ 𝑥 ∈ 𝑎 ) → ( ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑎 ) 𝑧 𝑅 𝑡 → ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ) ) |
| 26 | 25 | ralrimdva | ⊢ ( Ord 𝑎 → ( ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑎 ) 𝑧 𝑅 𝑡 → ∀ 𝑥 ∈ 𝑎 ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ) ) |
| 27 | 14 20 26 | sylc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → ∀ 𝑥 ∈ 𝑎 ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ) |
| 28 | ssrab | ⊢ ( 𝑎 ⊆ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } ↔ ( 𝑎 ⊆ On ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ) ) | |
| 29 | 12 27 28 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → 𝑎 ⊆ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } ) |
| 30 | 29 4 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑇 ) → 𝑎 ⊆ 𝑇 ) |
| 31 | 30 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑇 𝑎 ⊆ 𝑇 ) |
| 32 | dftr3 | ⊢ ( Tr 𝑇 ↔ ∀ 𝑎 ∈ 𝑇 𝑎 ⊆ 𝑇 ) | |
| 33 | 31 32 | sylibr | ⊢ ( 𝜑 → Tr 𝑇 ) |
| 34 | ordon | ⊢ Ord On | |
| 35 | trssord | ⊢ ( ( Tr 𝑇 ∧ 𝑇 ⊆ On ∧ Ord On ) → Ord 𝑇 ) | |
| 36 | 8 34 35 | mp3an23 | ⊢ ( Tr 𝑇 → Ord 𝑇 ) |
| 37 | 33 36 | syl | ⊢ ( 𝜑 → Ord 𝑇 ) |