This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | ||
| ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | ||
| ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | ||
| ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | ||
| ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | ||
| ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | ||
| Assertion | ordtypelem6 | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ( 𝑁 ∈ 𝑀 → ( 𝑂 ‘ 𝑁 ) 𝑅 ( 𝑂 ‘ 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 3 | ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | |
| 4 | ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 5 | ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | |
| 6 | ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | |
| 7 | ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | |
| 8 | fveq2 | ⊢ ( 𝑎 = 𝑁 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 9 | 8 | breq1d | ⊢ ( 𝑎 = 𝑁 → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ↔ ( 𝐹 ‘ 𝑁 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
| 10 | ssrab2 | ⊢ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ⊆ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } | |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ dom 𝑂 ) | |
| 12 | 1 2 3 4 5 6 7 | ordtypelem4 | ⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
| 13 | 12 | fdmd | ⊢ ( 𝜑 → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
| 15 | 11 14 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) |
| 16 | 1 2 3 4 5 6 7 | ordtypelem3 | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑀 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
| 17 | 15 16 | syldan | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ( 𝐹 ‘ 𝑀 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
| 18 | 10 17 | sselid | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ( 𝐹 ‘ 𝑀 ) ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ) |
| 19 | breq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑀 ) → ( 𝑗 𝑅 𝑤 ↔ 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) | |
| 20 | 19 | ralbidv | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑀 ) → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 ↔ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
| 21 | 20 | elrab | ⊢ ( ( 𝐹 ‘ 𝑀 ) ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ↔ ( ( 𝐹 ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
| 22 | 21 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑀 ) ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } → ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) |
| 23 | 18 22 | syl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) |
| 24 | 1 | tfr1a | ⊢ ( Fun 𝐹 ∧ Lim dom 𝐹 ) |
| 25 | 24 | simpli | ⊢ Fun 𝐹 |
| 26 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
| 27 | 25 26 | mpbi | ⊢ 𝐹 Fn dom 𝐹 |
| 28 | 24 | simpri | ⊢ Lim dom 𝐹 |
| 29 | limord | ⊢ ( Lim dom 𝐹 → Ord dom 𝐹 ) | |
| 30 | 28 29 | ax-mp | ⊢ Ord dom 𝐹 |
| 31 | inss2 | ⊢ ( 𝑇 ∩ dom 𝐹 ) ⊆ dom 𝐹 | |
| 32 | 13 31 | eqsstrdi | ⊢ ( 𝜑 → dom 𝑂 ⊆ dom 𝐹 ) |
| 33 | 32 | sselda | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ dom 𝐹 ) |
| 34 | ordelss | ⊢ ( ( Ord dom 𝐹 ∧ 𝑀 ∈ dom 𝐹 ) → 𝑀 ⊆ dom 𝐹 ) | |
| 35 | 30 33 34 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → 𝑀 ⊆ dom 𝐹 ) |
| 36 | breq1 | ⊢ ( 𝑗 = ( 𝐹 ‘ 𝑎 ) → ( 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ↔ ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) | |
| 37 | 36 | ralima | ⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝑀 ⊆ dom 𝐹 ) → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ↔ ∀ 𝑎 ∈ 𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
| 38 | 27 35 37 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ↔ ∀ 𝑎 ∈ 𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
| 39 | 23 38 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ∀ 𝑎 ∈ 𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) |
| 40 | 39 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ∀ 𝑎 ∈ 𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) |
| 41 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → 𝑁 ∈ 𝑀 ) | |
| 42 | 9 40 41 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝐹 ‘ 𝑁 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) |
| 43 | 1 2 3 4 5 6 7 | ordtypelem1 | ⊢ ( 𝜑 → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |
| 45 | 44 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝑂 ‘ 𝑁 ) = ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑁 ) ) |
| 46 | 1 2 3 4 5 6 7 | ordtypelem2 | ⊢ ( 𝜑 → Ord 𝑇 ) |
| 47 | inss1 | ⊢ ( 𝑇 ∩ dom 𝐹 ) ⊆ 𝑇 | |
| 48 | 13 47 | eqsstrdi | ⊢ ( 𝜑 → dom 𝑂 ⊆ 𝑇 ) |
| 49 | 48 | sselda | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ 𝑇 ) |
| 50 | 49 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → 𝑀 ∈ 𝑇 ) |
| 51 | ordelss | ⊢ ( ( Ord 𝑇 ∧ 𝑀 ∈ 𝑇 ) → 𝑀 ⊆ 𝑇 ) | |
| 52 | 46 50 51 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → 𝑀 ⊆ 𝑇 ) |
| 53 | 52 41 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → 𝑁 ∈ 𝑇 ) |
| 54 | 53 | fvresd | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 55 | 45 54 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝑂 ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 56 | 44 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝑂 ‘ 𝑀 ) = ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑀 ) ) |
| 57 | 50 | fvresd | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 58 | 56 57 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝑂 ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 59 | 42 55 58 | 3brtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝑂 ‘ 𝑁 ) 𝑅 ( 𝑂 ‘ 𝑀 ) ) |
| 60 | 59 | expr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ( 𝑁 ∈ 𝑀 → ( 𝑂 ‘ 𝑁 ) 𝑅 ( 𝑂 ‘ 𝑀 ) ) ) |