This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | ||
| ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | ||
| ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | ||
| ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | ||
| ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | ||
| ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | ||
| Assertion | ordtypelem3 | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑀 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 3 | ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | |
| 4 | ordtypelem.5 | ⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 5 | ordtypelem.6 | ⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) | |
| 6 | ordtypelem.7 | ⊢ ( 𝜑 → 𝑅 We 𝐴 ) | |
| 7 | ordtypelem.8 | ⊢ ( 𝜑 → 𝑅 Se 𝐴 ) | |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) | |
| 9 | 8 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → 𝑀 ∈ dom 𝐹 ) |
| 10 | 1 | tfr2a | ⊢ ( 𝑀 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑀 ) ) ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑀 ) ) ) |
| 12 | 1 | tfr1a | ⊢ ( Fun 𝐹 ∧ Lim dom 𝐹 ) |
| 13 | 12 | simpri | ⊢ Lim dom 𝐹 |
| 14 | limord | ⊢ ( Lim dom 𝐹 → Ord dom 𝐹 ) | |
| 15 | 13 14 | ax-mp | ⊢ Ord dom 𝐹 |
| 16 | ordelord | ⊢ ( ( Ord dom 𝐹 ∧ 𝑀 ∈ dom 𝐹 ) → Ord 𝑀 ) | |
| 17 | 15 9 16 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → Ord 𝑀 ) |
| 18 | 1 | tfr2b | ⊢ ( Ord 𝑀 → ( 𝑀 ∈ dom 𝐹 ↔ ( 𝐹 ↾ 𝑀 ) ∈ V ) ) |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝑀 ∈ dom 𝐹 ↔ ( 𝐹 ↾ 𝑀 ) ∈ V ) ) |
| 20 | 9 19 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ↾ 𝑀 ) ∈ V ) |
| 21 | rneq | ⊢ ( ℎ = ( 𝐹 ↾ 𝑀 ) → ran ℎ = ran ( 𝐹 ↾ 𝑀 ) ) | |
| 22 | df-ima | ⊢ ( 𝐹 “ 𝑀 ) = ran ( 𝐹 ↾ 𝑀 ) | |
| 23 | 21 22 | eqtr4di | ⊢ ( ℎ = ( 𝐹 ↾ 𝑀 ) → ran ℎ = ( 𝐹 “ 𝑀 ) ) |
| 24 | 23 | raleqdv | ⊢ ( ℎ = ( 𝐹 ↾ 𝑀 ) → ( ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 ↔ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 ) ) |
| 25 | 24 | rabbidv | ⊢ ( ℎ = ( 𝐹 ↾ 𝑀 ) → { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ) |
| 26 | 2 25 | eqtrid | ⊢ ( ℎ = ( 𝐹 ↾ 𝑀 ) → 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ) |
| 27 | 26 | raleqdv | ⊢ ( ℎ = ( 𝐹 ↾ 𝑀 ) → ( ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ↔ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) |
| 28 | 26 27 | riotaeqbidv | ⊢ ( ℎ = ( 𝐹 ↾ 𝑀 ) → ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) = ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) |
| 29 | riotaex | ⊢ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ∈ V | |
| 30 | 28 3 29 | fvmpt | ⊢ ( ( 𝐹 ↾ 𝑀 ) ∈ V → ( 𝐺 ‘ ( 𝐹 ↾ 𝑀 ) ) = ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) |
| 31 | 20 30 | syl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐺 ‘ ( 𝐹 ↾ 𝑀 ) ) = ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) |
| 32 | 11 31 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑀 ) = ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) |
| 33 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → 𝑅 We 𝐴 ) |
| 34 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → 𝑅 Se 𝐴 ) |
| 35 | ssrab2 | ⊢ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ⊆ 𝐴 | |
| 36 | 35 | a1i | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ⊆ 𝐴 ) |
| 37 | 8 | elin1d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → 𝑀 ∈ 𝑇 ) |
| 38 | imaeq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑀 ) ) | |
| 39 | 38 | raleqdv | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∀ 𝑧 ∈ ( 𝐹 “ 𝑀 ) 𝑧 𝑅 𝑡 ) ) |
| 40 | 39 | rexbidv | ⊢ ( 𝑥 = 𝑀 → ( ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 ↔ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑀 ) 𝑧 𝑅 𝑡 ) ) |
| 41 | 40 4 | elrab2 | ⊢ ( 𝑀 ∈ 𝑇 ↔ ( 𝑀 ∈ On ∧ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑀 ) 𝑧 𝑅 𝑡 ) ) |
| 42 | 41 | simprbi | ⊢ ( 𝑀 ∈ 𝑇 → ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑀 ) 𝑧 𝑅 𝑡 ) |
| 43 | 37 42 | syl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑀 ) 𝑧 𝑅 𝑡 ) |
| 44 | breq1 | ⊢ ( 𝑗 = 𝑧 → ( 𝑗 𝑅 𝑤 ↔ 𝑧 𝑅 𝑤 ) ) | |
| 45 | 44 | cbvralvw | ⊢ ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 ↔ ∀ 𝑧 ∈ ( 𝐹 “ 𝑀 ) 𝑧 𝑅 𝑤 ) |
| 46 | breq2 | ⊢ ( 𝑤 = 𝑡 → ( 𝑧 𝑅 𝑤 ↔ 𝑧 𝑅 𝑡 ) ) | |
| 47 | 46 | ralbidv | ⊢ ( 𝑤 = 𝑡 → ( ∀ 𝑧 ∈ ( 𝐹 “ 𝑀 ) 𝑧 𝑅 𝑤 ↔ ∀ 𝑧 ∈ ( 𝐹 “ 𝑀 ) 𝑧 𝑅 𝑡 ) ) |
| 48 | 45 47 | bitrid | ⊢ ( 𝑤 = 𝑡 → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 ↔ ∀ 𝑧 ∈ ( 𝐹 “ 𝑀 ) 𝑧 𝑅 𝑡 ) ) |
| 49 | 48 | cbvrexvw | ⊢ ( ∃ 𝑤 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 ↔ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑀 ) 𝑧 𝑅 𝑡 ) |
| 50 | 43 49 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ∃ 𝑤 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 ) |
| 51 | rabn0 | ⊢ ( { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ≠ ∅ ↔ ∃ 𝑤 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 ) | |
| 52 | 50 51 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ≠ ∅ ) |
| 53 | wereu2 | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ⊆ 𝐴 ∧ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ≠ ∅ ) ) → ∃! 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) | |
| 54 | 33 34 36 52 53 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ∃! 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) |
| 55 | riotacl2 | ⊢ ( ∃! 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 → ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) | |
| 56 | 54 55 | syl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
| 57 | 32 56 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑀 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |