This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sets which are open in a measurable subspace are measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subopnmbl.1 | ⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) | |
| Assertion | subopnmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ 𝐽 ) → 𝐵 ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subopnmbl.1 | ⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝐵 ∈ 𝐽 ↔ 𝐵 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 3 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 4 | elrest | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝐴 ∈ dom vol ) → ( 𝐵 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ ( topGen ‘ ran (,) ) 𝐵 = ( 𝑥 ∩ 𝐴 ) ) ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐴 ∈ dom vol → ( 𝐵 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ ( topGen ‘ ran (,) ) 𝐵 = ( 𝑥 ∩ 𝐴 ) ) ) |
| 6 | 2 5 | bitrid | ⊢ ( 𝐴 ∈ dom vol → ( 𝐵 ∈ 𝐽 ↔ ∃ 𝑥 ∈ ( topGen ‘ ran (,) ) 𝐵 = ( 𝑥 ∩ 𝐴 ) ) ) |
| 7 | opnmbl | ⊢ ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ∈ dom vol ) | |
| 8 | id | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ∈ dom vol ) | |
| 9 | inmbl | ⊢ ( ( 𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( 𝑥 ∩ 𝐴 ) ∈ dom vol ) | |
| 10 | 7 8 9 | syl2anr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → ( 𝑥 ∩ 𝐴 ) ∈ dom vol ) |
| 11 | eleq1a | ⊢ ( ( 𝑥 ∩ 𝐴 ) ∈ dom vol → ( 𝐵 = ( 𝑥 ∩ 𝐴 ) → 𝐵 ∈ dom vol ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → ( 𝐵 = ( 𝑥 ∩ 𝐴 ) → 𝐵 ∈ dom vol ) ) |
| 13 | 12 | rexlimdva | ⊢ ( 𝐴 ∈ dom vol → ( ∃ 𝑥 ∈ ( topGen ‘ ran (,) ) 𝐵 = ( 𝑥 ∩ 𝐴 ) → 𝐵 ∈ dom vol ) ) |
| 14 | 6 13 | sylbid | ⊢ ( 𝐴 ∈ dom vol → ( 𝐵 ∈ 𝐽 → 𝐵 ∈ dom vol ) ) |
| 15 | 14 | imp | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ 𝐽 ) → 𝐵 ∈ dom vol ) |