This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of TakeutiZaring p. 92. (Contributed by NM, 26-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfin | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ Fin ↔ 𝐴 ∈ ω ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | ⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) | |
| 2 | onomeneq | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ 𝑥 ↔ 𝐴 = 𝑥 ) ) | |
| 3 | eleq1a | ⊢ ( 𝑥 ∈ ω → ( 𝐴 = 𝑥 → 𝐴 ∈ ω ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 = 𝑥 → 𝐴 ∈ ω ) ) |
| 5 | 2 4 | sylbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ ω ) → ( 𝐴 ≈ 𝑥 → 𝐴 ∈ ω ) ) |
| 6 | 5 | rexlimdva | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ ω ) ) |
| 7 | enrefnn | ⊢ ( 𝐴 ∈ ω → 𝐴 ≈ 𝐴 ) | |
| 8 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴 ) ) | |
| 9 | 8 | rspcev | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴 ) → ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
| 10 | 7 9 | mpdan | ⊢ ( 𝐴 ∈ ω → ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
| 11 | 6 10 | impbid1 | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ↔ 𝐴 ∈ ω ) ) |
| 12 | 1 11 | bitrid | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ Fin ↔ 𝐴 ∈ ω ) ) |