This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of TakeutiZaring p. 90 and its converse. (Contributed by NM, 26-Jul-2004) Avoid ax-pow . (Revised by BTernaryTau, 2-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onomeneq | |- ( ( A e. On /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom | |- ( A ~~ B -> A ~<_ B ) |
|
| 2 | nnfi | |- ( B e. _om -> B e. Fin ) |
|
| 3 | domfi | |- ( ( B e. Fin /\ A ~<_ B ) -> A e. Fin ) |
|
| 4 | simpr | |- ( ( B e. Fin /\ A ~<_ B ) -> A ~<_ B ) |
|
| 5 | 3 4 | jca | |- ( ( B e. Fin /\ A ~<_ B ) -> ( A e. Fin /\ A ~<_ B ) ) |
| 6 | domnsymfi | |- ( ( A e. Fin /\ A ~<_ B ) -> -. B ~< A ) |
|
| 7 | 6 | ex | |- ( A e. Fin -> ( A ~<_ B -> -. B ~< A ) ) |
| 8 | php3 | |- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |
|
| 9 | 8 | ex | |- ( A e. Fin -> ( B C. A -> B ~< A ) ) |
| 10 | 7 9 | nsyld | |- ( A e. Fin -> ( A ~<_ B -> -. B C. A ) ) |
| 11 | 10 | adantl | |- ( ( B e. _om /\ A e. Fin ) -> ( A ~<_ B -> -. B C. A ) ) |
| 12 | 11 | expimpd | |- ( B e. _om -> ( ( A e. Fin /\ A ~<_ B ) -> -. B C. A ) ) |
| 13 | 5 12 | syl5 | |- ( B e. _om -> ( ( B e. Fin /\ A ~<_ B ) -> -. B C. A ) ) |
| 14 | 2 13 | mpand | |- ( B e. _om -> ( A ~<_ B -> -. B C. A ) ) |
| 15 | 14 | adantl | |- ( ( A e. On /\ B e. _om ) -> ( A ~<_ B -> -. B C. A ) ) |
| 16 | eloni | |- ( A e. On -> Ord A ) |
|
| 17 | nnord | |- ( B e. _om -> Ord B ) |
|
| 18 | ordtri1 | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) |
|
| 19 | ordelpss | |- ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) ) |
|
| 20 | 19 | ancoms | |- ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) ) |
| 21 | 20 | notbid | |- ( ( Ord A /\ Ord B ) -> ( -. B e. A <-> -. B C. A ) ) |
| 22 | 18 21 | bitrd | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B C. A ) ) |
| 23 | 16 17 22 | syl2an | |- ( ( A e. On /\ B e. _om ) -> ( A C_ B <-> -. B C. A ) ) |
| 24 | 15 23 | sylibrd | |- ( ( A e. On /\ B e. _om ) -> ( A ~<_ B -> A C_ B ) ) |
| 25 | 1 24 | syl5 | |- ( ( A e. On /\ B e. _om ) -> ( A ~~ B -> A C_ B ) ) |
| 26 | 25 | 3impia | |- ( ( A e. On /\ B e. _om /\ A ~~ B ) -> A C_ B ) |
| 27 | ensymfib | |- ( B e. Fin -> ( B ~~ A <-> A ~~ B ) ) |
|
| 28 | 2 27 | syl | |- ( B e. _om -> ( B ~~ A <-> A ~~ B ) ) |
| 29 | endom | |- ( B ~~ A -> B ~<_ A ) |
|
| 30 | 28 29 | biimtrrdi | |- ( B e. _om -> ( A ~~ B -> B ~<_ A ) ) |
| 31 | 30 | imp | |- ( ( B e. _om /\ A ~~ B ) -> B ~<_ A ) |
| 32 | 31 | 3adant1 | |- ( ( A e. On /\ B e. _om /\ A ~~ B ) -> B ~<_ A ) |
| 33 | nndomog | |- ( ( B e. _om /\ A e. On ) -> ( B ~<_ A <-> B C_ A ) ) |
|
| 34 | 33 | ancoms | |- ( ( A e. On /\ B e. _om ) -> ( B ~<_ A <-> B C_ A ) ) |
| 35 | 34 | biimp3a | |- ( ( A e. On /\ B e. _om /\ B ~<_ A ) -> B C_ A ) |
| 36 | 32 35 | syld3an3 | |- ( ( A e. On /\ B e. _om /\ A ~~ B ) -> B C_ A ) |
| 37 | 26 36 | eqssd | |- ( ( A e. On /\ B e. _om /\ A ~~ B ) -> A = B ) |
| 38 | 37 | 3expia | |- ( ( A e. On /\ B e. _om ) -> ( A ~~ B -> A = B ) ) |
| 39 | enrefnn | |- ( B e. _om -> B ~~ B ) |
|
| 40 | breq1 | |- ( A = B -> ( A ~~ B <-> B ~~ B ) ) |
|
| 41 | 39 40 | syl5ibrcom | |- ( B e. _om -> ( A = B -> A ~~ B ) ) |
| 42 | 41 | adantl | |- ( ( A e. On /\ B e. _om ) -> ( A = B -> A ~~ B ) ) |
| 43 | 38 42 | impbid | |- ( ( A e. On /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |