This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym ). (Contributed by BTernaryTau, 22-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domnsymfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 | ⊢ ( 𝐴 ≼ 𝐵 ↔ ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ) | |
| 2 | sdomnen | ⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) |
| 4 | sdomdom | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 5 | sdomdom | ⊢ ( 𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 6 | sbthfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → 𝐵 ≈ 𝐴 ) | |
| 7 | ensymfib | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴 ) ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴 ) ) |
| 9 | 6 8 | mpbird | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
| 10 | 5 9 | syl3an2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≺ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
| 11 | 4 10 | syl3an3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≺ 𝐴 ∧ 𝐴 ≺ 𝐵 ) → 𝐴 ≈ 𝐵 ) |
| 12 | 11 | 3com23 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 13 | 12 | 3expa | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ) ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≈ 𝐵 ) |
| 14 | 3 13 | mtand | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) |
| 15 | sdomnen | ⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴 ) | |
| 16 | 7 | biimpa | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → 𝐵 ≈ 𝐴 ) |
| 17 | 15 16 | nsyl3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) |
| 18 | 14 17 | jaodan | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ) ) → ¬ 𝐵 ≺ 𝐴 ) |
| 19 | 1 18 | sylan2b | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) |