This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo when both are natural numbers. (Contributed by NM, 17-Jun-1998) Generalize from nndomo . (Revised by RP, 5-Nov-2023) Avoid ax-pow . (Revised by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndomog | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
| 2 | domnsymfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≼ 𝐵 ) → ¬ 𝐵 ≺ 𝐴 ) |
| 4 | 3 | ex | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
| 5 | php2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) | |
| 6 | 5 | ex | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
| 7 | 4 6 | nsyld | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴 ) ) |
| 9 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 10 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 11 | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 12 | ordelpss | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) | |
| 13 | 12 | ancoms | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
| 14 | 13 | notbid | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
| 15 | 11 14 | bitrd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
| 16 | 9 10 15 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴 ) ) |
| 17 | 8 16 | sylibrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 18 | ssdomfi2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ≼ 𝐵 ) | |
| 19 | 18 | 3expia | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 20 | 1 19 | sylan | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 21 | 17 20 | impbid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) → ( 𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |