This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omopthi . (Contributed by Scott Fenton, 18-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omopthlem1.1 | ⊢ 𝐴 ∈ ω | |
| omopthlem1.2 | ⊢ 𝐶 ∈ ω | ||
| Assertion | omopthlem1 | ⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omopthlem1.1 | ⊢ 𝐴 ∈ ω | |
| 2 | omopthlem1.2 | ⊢ 𝐶 ∈ ω | |
| 3 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 4 | 1 3 | ax-mp | ⊢ suc 𝐴 ∈ ω |
| 5 | nnmwordi | ⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ suc 𝐴 ∈ ω ) → ( suc 𝐴 ⊆ 𝐶 → ( suc 𝐴 ·o suc 𝐴 ) ⊆ ( suc 𝐴 ·o 𝐶 ) ) ) | |
| 6 | 4 2 4 5 | mp3an | ⊢ ( suc 𝐴 ⊆ 𝐶 → ( suc 𝐴 ·o suc 𝐴 ) ⊆ ( suc 𝐴 ·o 𝐶 ) ) |
| 7 | nnmwordri | ⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐶 ∈ ω ) → ( suc 𝐴 ⊆ 𝐶 → ( suc 𝐴 ·o 𝐶 ) ⊆ ( 𝐶 ·o 𝐶 ) ) ) | |
| 8 | 4 2 2 7 | mp3an | ⊢ ( suc 𝐴 ⊆ 𝐶 → ( suc 𝐴 ·o 𝐶 ) ⊆ ( 𝐶 ·o 𝐶 ) ) |
| 9 | 6 8 | sstrd | ⊢ ( suc 𝐴 ⊆ 𝐶 → ( suc 𝐴 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝐶 ) ) |
| 10 | 1 | nnoni | ⊢ 𝐴 ∈ On |
| 11 | 2 | nnoni | ⊢ 𝐶 ∈ On |
| 12 | 10 11 | onsucssi | ⊢ ( 𝐴 ∈ 𝐶 ↔ suc 𝐴 ⊆ 𝐶 ) |
| 13 | 1 1 | nnmcli | ⊢ ( 𝐴 ·o 𝐴 ) ∈ ω |
| 14 | 2onn | ⊢ 2o ∈ ω | |
| 15 | 1 14 | nnmcli | ⊢ ( 𝐴 ·o 2o ) ∈ ω |
| 16 | 13 15 | nnacli | ⊢ ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ ω |
| 17 | 16 | nnoni | ⊢ ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ On |
| 18 | 2 2 | nnmcli | ⊢ ( 𝐶 ·o 𝐶 ) ∈ ω |
| 19 | 18 | nnoni | ⊢ ( 𝐶 ·o 𝐶 ) ∈ On |
| 20 | 17 19 | onsucssi | ⊢ ( ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ↔ suc ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ⊆ ( 𝐶 ·o 𝐶 ) ) |
| 21 | 4 1 | nnmcli | ⊢ ( suc 𝐴 ·o 𝐴 ) ∈ ω |
| 22 | nnasuc | ⊢ ( ( ( suc 𝐴 ·o 𝐴 ) ∈ ω ∧ 𝐴 ∈ ω ) → ( ( suc 𝐴 ·o 𝐴 ) +o suc 𝐴 ) = suc ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) ) | |
| 23 | 21 1 22 | mp2an | ⊢ ( ( suc 𝐴 ·o 𝐴 ) +o suc 𝐴 ) = suc ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) |
| 24 | nnmsuc | ⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω ) → ( suc 𝐴 ·o suc 𝐴 ) = ( ( suc 𝐴 ·o 𝐴 ) +o suc 𝐴 ) ) | |
| 25 | 4 1 24 | mp2an | ⊢ ( suc 𝐴 ·o suc 𝐴 ) = ( ( suc 𝐴 ·o 𝐴 ) +o suc 𝐴 ) |
| 26 | nnaass | ⊢ ( ( ( 𝐴 ·o 𝐴 ) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 +o 𝐴 ) ) ) | |
| 27 | 13 1 1 26 | mp3an | ⊢ ( ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 +o 𝐴 ) ) |
| 28 | nnmcom | ⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω ) → ( suc 𝐴 ·o 𝐴 ) = ( 𝐴 ·o suc 𝐴 ) ) | |
| 29 | 4 1 28 | mp2an | ⊢ ( suc 𝐴 ·o 𝐴 ) = ( 𝐴 ·o suc 𝐴 ) |
| 30 | nnmsuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐴 ·o suc 𝐴 ) = ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) ) | |
| 31 | 1 1 30 | mp2an | ⊢ ( 𝐴 ·o suc 𝐴 ) = ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) |
| 32 | 29 31 | eqtri | ⊢ ( suc 𝐴 ·o 𝐴 ) = ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) |
| 33 | 32 | oveq1i | ⊢ ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) = ( ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) +o 𝐴 ) |
| 34 | nnm2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o 2o ) = ( 𝐴 +o 𝐴 ) ) | |
| 35 | 1 34 | ax-mp | ⊢ ( 𝐴 ·o 2o ) = ( 𝐴 +o 𝐴 ) |
| 36 | 35 | oveq2i | ⊢ ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 +o 𝐴 ) ) |
| 37 | 27 33 36 | 3eqtr4ri | ⊢ ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) |
| 38 | suceq | ⊢ ( ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) → suc ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = suc ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) ) | |
| 39 | 37 38 | ax-mp | ⊢ suc ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = suc ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) |
| 40 | 23 25 39 | 3eqtr4ri | ⊢ suc ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = ( suc 𝐴 ·o suc 𝐴 ) |
| 41 | 40 | sseq1i | ⊢ ( suc ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ⊆ ( 𝐶 ·o 𝐶 ) ↔ ( suc 𝐴 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝐶 ) ) |
| 42 | 20 41 | bitri | ⊢ ( ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ↔ ( suc 𝐴 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝐶 ) ) |
| 43 | 9 12 42 | 3imtr4i | ⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) |