This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair theorem for _om . Theorem 17.3 of Quine p. 124. This proof is adapted from nn0opthi . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omopth.1 | ⊢ 𝐴 ∈ ω | |
| omopth.2 | ⊢ 𝐵 ∈ ω | ||
| omopth.3 | ⊢ 𝐶 ∈ ω | ||
| omopth.4 | ⊢ 𝐷 ∈ ω | ||
| Assertion | omopthi | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omopth.1 | ⊢ 𝐴 ∈ ω | |
| 2 | omopth.2 | ⊢ 𝐵 ∈ ω | |
| 3 | omopth.3 | ⊢ 𝐶 ∈ ω | |
| 4 | omopth.4 | ⊢ 𝐷 ∈ ω | |
| 5 | 1 2 | nnacli | ⊢ ( 𝐴 +o 𝐵 ) ∈ ω |
| 6 | 5 | nnoni | ⊢ ( 𝐴 +o 𝐵 ) ∈ On |
| 7 | 6 | onordi | ⊢ Ord ( 𝐴 +o 𝐵 ) |
| 8 | 3 4 | nnacli | ⊢ ( 𝐶 +o 𝐷 ) ∈ ω |
| 9 | 8 | nnoni | ⊢ ( 𝐶 +o 𝐷 ) ∈ On |
| 10 | 9 | onordi | ⊢ Ord ( 𝐶 +o 𝐷 ) |
| 11 | ordtri3 | ⊢ ( ( Ord ( 𝐴 +o 𝐵 ) ∧ Ord ( 𝐶 +o 𝐷 ) ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) ∨ ( 𝐶 +o 𝐷 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) | |
| 12 | 7 10 11 | mp2an | ⊢ ( ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) ∨ ( 𝐶 +o 𝐷 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 13 | 12 | con2bii | ⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) ∨ ( 𝐶 +o 𝐷 ) ∈ ( 𝐴 +o 𝐵 ) ) ↔ ¬ ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ) |
| 14 | 1 2 8 4 | omopthlem2 | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) → ¬ ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ) |
| 15 | eqcom | ⊢ ( ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ↔ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) | |
| 16 | 14 15 | sylnib | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 17 | 3 4 5 2 | omopthlem2 | ⊢ ( ( 𝐶 +o 𝐷 ) ∈ ( 𝐴 +o 𝐵 ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 18 | 16 17 | jaoi | ⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) ∨ ( 𝐶 +o 𝐷 ) ∈ ( 𝐴 +o 𝐵 ) ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 19 | 13 18 | sylbir | ⊢ ( ¬ ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 20 | 19 | con4i | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ) |
| 21 | id | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) | |
| 22 | 20 20 | oveq12d | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) = ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) ) |
| 23 | 22 | oveq1d | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐷 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 24 | 21 23 | eqtr4d | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐷 ) ) |
| 25 | 5 5 | nnmcli | ⊢ ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω |
| 26 | nnacan | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐷 ∈ ω ) → ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐷 ) ↔ 𝐵 = 𝐷 ) ) | |
| 27 | 25 2 4 26 | mp3an | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐷 ) ↔ 𝐵 = 𝐷 ) |
| 28 | 24 27 | sylib | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → 𝐵 = 𝐷 ) |
| 29 | 28 | oveq2d | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( 𝐶 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ) |
| 30 | 20 29 | eqtr4d | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐵 ) ) |
| 31 | nnacom | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐵 +o 𝐴 ) = ( 𝐴 +o 𝐵 ) ) | |
| 32 | 2 1 31 | mp2an | ⊢ ( 𝐵 +o 𝐴 ) = ( 𝐴 +o 𝐵 ) |
| 33 | nnacom | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 +o 𝐶 ) = ( 𝐶 +o 𝐵 ) ) | |
| 34 | 2 3 33 | mp2an | ⊢ ( 𝐵 +o 𝐶 ) = ( 𝐶 +o 𝐵 ) |
| 35 | 30 32 34 | 3eqtr4g | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( 𝐵 +o 𝐴 ) = ( 𝐵 +o 𝐶 ) ) |
| 36 | nnacan | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐵 +o 𝐴 ) = ( 𝐵 +o 𝐶 ) ↔ 𝐴 = 𝐶 ) ) | |
| 37 | 2 1 3 36 | mp3an | ⊢ ( ( 𝐵 +o 𝐴 ) = ( 𝐵 +o 𝐶 ) ↔ 𝐴 = 𝐶 ) |
| 38 | 35 37 | sylib | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → 𝐴 = 𝐶 ) |
| 39 | 38 28 | jca | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 40 | oveq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ) | |
| 41 | 40 40 | oveq12d | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) = ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) ) |
| 42 | simpr | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → 𝐵 = 𝐷 ) | |
| 43 | 41 42 | oveq12d | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 44 | 39 43 | impbii | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |