This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of TakeutiZaring p. 63, limited to natural numbers. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmwordri | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnmwordi | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ) ) | |
| 2 | nnmcom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ·o 𝐶 ) = ( 𝐶 ·o 𝐴 ) ) | |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ·o 𝐶 ) = ( 𝐶 ·o 𝐴 ) ) |
| 4 | nnmcom | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 ·o 𝐶 ) = ( 𝐶 ·o 𝐵 ) ) | |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 ·o 𝐶 ) = ( 𝐶 ·o 𝐵 ) ) |
| 6 | 3 5 | sseq12d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ) ) |
| 7 | 1 6 | sylibrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |