This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of natural numbers is associative. Theorem 4K(1) of Enderton p. 81. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaass | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐶 ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ↔ ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ) ↔ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( ( 𝐴 +o 𝐵 ) +o ∅ ) ) | |
| 7 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 +o ( 𝐵 +o ∅ ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ↔ ( ( 𝐴 +o 𝐵 ) +o ∅ ) = ( 𝐴 +o ( 𝐵 +o ∅ ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) | |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 13 | 10 12 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ↔ ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) ) | |
| 15 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ↔ ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 18 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) | |
| 19 | nna0 | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ ω → ( ( 𝐴 +o 𝐵 ) +o ∅ ) = ( 𝐴 +o 𝐵 ) ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) +o ∅ ) = ( 𝐴 +o 𝐵 ) ) |
| 21 | nna0 | ⊢ ( 𝐵 ∈ ω → ( 𝐵 +o ∅ ) = 𝐵 ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝐵 ∈ ω → ( 𝐴 +o ( 𝐵 +o ∅ ) ) = ( 𝐴 +o 𝐵 ) ) |
| 23 | 22 | adantl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o ( 𝐵 +o ∅ ) ) = ( 𝐴 +o 𝐵 ) ) |
| 24 | 20 23 | eqtr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) +o ∅ ) = ( 𝐴 +o ( 𝐵 +o ∅ ) ) ) |
| 25 | suceq | ⊢ ( ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → suc ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) | |
| 26 | nnasuc | ⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = suc ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) | |
| 27 | 18 26 | sylan | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = suc ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) |
| 28 | nnasuc | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) | |
| 29 | 28 | oveq2d | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) = ( 𝐴 +o suc ( 𝐵 +o 𝑦 ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) = ( 𝐴 +o suc ( 𝐵 +o 𝑦 ) ) ) |
| 31 | nnacl | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 +o 𝑦 ) ∈ ω ) | |
| 32 | nnasuc | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 +o 𝑦 ) ∈ ω ) → ( 𝐴 +o suc ( 𝐵 +o 𝑦 ) ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) | |
| 33 | 31 32 | sylan2 | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝐴 +o suc ( 𝐵 +o 𝑦 ) ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 34 | 30 33 | eqtrd | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 35 | 34 | anassrs | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 36 | 27 35 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) ↔ suc ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) |
| 37 | 25 36 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 38 | 37 | expcom | ⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) ) ) ) |
| 39 | 9 13 17 24 38 | finds2 | ⊢ ( 𝑥 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ) ) |
| 40 | 5 39 | vtoclga | ⊢ ( 𝐶 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) ) |
| 41 | 40 | com12 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 ∈ ω → ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) ) |
| 42 | 41 | 3impia | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) |