This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of TakeutiZaring p. 42 and its converse. (Contributed by NM, 16-Sep-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | onssi.1 | ⊢ 𝐴 ∈ On | |
| onsucssi.2 | ⊢ 𝐵 ∈ On | ||
| Assertion | onsucssi | ⊢ ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onssi.1 | ⊢ 𝐴 ∈ On | |
| 2 | onsucssi.2 | ⊢ 𝐵 ∈ On | |
| 3 | 2 | onordi | ⊢ Ord 𝐵 |
| 4 | ordelsuc | ⊢ ( ( 𝐴 ∈ On ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵 ) ) | |
| 5 | 1 3 4 | mp2an | ⊢ ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵 ) |