This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omopthi . (Contributed by Scott Fenton, 18-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omopthlem1.1 | |- A e. _om |
|
| omopthlem1.2 | |- C e. _om |
||
| Assertion | omopthlem1 | |- ( A e. C -> ( ( A .o A ) +o ( A .o 2o ) ) e. ( C .o C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omopthlem1.1 | |- A e. _om |
|
| 2 | omopthlem1.2 | |- C e. _om |
|
| 3 | peano2 | |- ( A e. _om -> suc A e. _om ) |
|
| 4 | 1 3 | ax-mp | |- suc A e. _om |
| 5 | nnmwordi | |- ( ( suc A e. _om /\ C e. _om /\ suc A e. _om ) -> ( suc A C_ C -> ( suc A .o suc A ) C_ ( suc A .o C ) ) ) |
|
| 6 | 4 2 4 5 | mp3an | |- ( suc A C_ C -> ( suc A .o suc A ) C_ ( suc A .o C ) ) |
| 7 | nnmwordri | |- ( ( suc A e. _om /\ C e. _om /\ C e. _om ) -> ( suc A C_ C -> ( suc A .o C ) C_ ( C .o C ) ) ) |
|
| 8 | 4 2 2 7 | mp3an | |- ( suc A C_ C -> ( suc A .o C ) C_ ( C .o C ) ) |
| 9 | 6 8 | sstrd | |- ( suc A C_ C -> ( suc A .o suc A ) C_ ( C .o C ) ) |
| 10 | 1 | nnoni | |- A e. On |
| 11 | 2 | nnoni | |- C e. On |
| 12 | 10 11 | onsucssi | |- ( A e. C <-> suc A C_ C ) |
| 13 | 1 1 | nnmcli | |- ( A .o A ) e. _om |
| 14 | 2onn | |- 2o e. _om |
|
| 15 | 1 14 | nnmcli | |- ( A .o 2o ) e. _om |
| 16 | 13 15 | nnacli | |- ( ( A .o A ) +o ( A .o 2o ) ) e. _om |
| 17 | 16 | nnoni | |- ( ( A .o A ) +o ( A .o 2o ) ) e. On |
| 18 | 2 2 | nnmcli | |- ( C .o C ) e. _om |
| 19 | 18 | nnoni | |- ( C .o C ) e. On |
| 20 | 17 19 | onsucssi | |- ( ( ( A .o A ) +o ( A .o 2o ) ) e. ( C .o C ) <-> suc ( ( A .o A ) +o ( A .o 2o ) ) C_ ( C .o C ) ) |
| 21 | 4 1 | nnmcli | |- ( suc A .o A ) e. _om |
| 22 | nnasuc | |- ( ( ( suc A .o A ) e. _om /\ A e. _om ) -> ( ( suc A .o A ) +o suc A ) = suc ( ( suc A .o A ) +o A ) ) |
|
| 23 | 21 1 22 | mp2an | |- ( ( suc A .o A ) +o suc A ) = suc ( ( suc A .o A ) +o A ) |
| 24 | nnmsuc | |- ( ( suc A e. _om /\ A e. _om ) -> ( suc A .o suc A ) = ( ( suc A .o A ) +o suc A ) ) |
|
| 25 | 4 1 24 | mp2an | |- ( suc A .o suc A ) = ( ( suc A .o A ) +o suc A ) |
| 26 | nnaass | |- ( ( ( A .o A ) e. _om /\ A e. _om /\ A e. _om ) -> ( ( ( A .o A ) +o A ) +o A ) = ( ( A .o A ) +o ( A +o A ) ) ) |
|
| 27 | 13 1 1 26 | mp3an | |- ( ( ( A .o A ) +o A ) +o A ) = ( ( A .o A ) +o ( A +o A ) ) |
| 28 | nnmcom | |- ( ( suc A e. _om /\ A e. _om ) -> ( suc A .o A ) = ( A .o suc A ) ) |
|
| 29 | 4 1 28 | mp2an | |- ( suc A .o A ) = ( A .o suc A ) |
| 30 | nnmsuc | |- ( ( A e. _om /\ A e. _om ) -> ( A .o suc A ) = ( ( A .o A ) +o A ) ) |
|
| 31 | 1 1 30 | mp2an | |- ( A .o suc A ) = ( ( A .o A ) +o A ) |
| 32 | 29 31 | eqtri | |- ( suc A .o A ) = ( ( A .o A ) +o A ) |
| 33 | 32 | oveq1i | |- ( ( suc A .o A ) +o A ) = ( ( ( A .o A ) +o A ) +o A ) |
| 34 | nnm2 | |- ( A e. _om -> ( A .o 2o ) = ( A +o A ) ) |
|
| 35 | 1 34 | ax-mp | |- ( A .o 2o ) = ( A +o A ) |
| 36 | 35 | oveq2i | |- ( ( A .o A ) +o ( A .o 2o ) ) = ( ( A .o A ) +o ( A +o A ) ) |
| 37 | 27 33 36 | 3eqtr4ri | |- ( ( A .o A ) +o ( A .o 2o ) ) = ( ( suc A .o A ) +o A ) |
| 38 | suceq | |- ( ( ( A .o A ) +o ( A .o 2o ) ) = ( ( suc A .o A ) +o A ) -> suc ( ( A .o A ) +o ( A .o 2o ) ) = suc ( ( suc A .o A ) +o A ) ) |
|
| 39 | 37 38 | ax-mp | |- suc ( ( A .o A ) +o ( A .o 2o ) ) = suc ( ( suc A .o A ) +o A ) |
| 40 | 23 25 39 | 3eqtr4ri | |- suc ( ( A .o A ) +o ( A .o 2o ) ) = ( suc A .o suc A ) |
| 41 | 40 | sseq1i | |- ( suc ( ( A .o A ) +o ( A .o 2o ) ) C_ ( C .o C ) <-> ( suc A .o suc A ) C_ ( C .o C ) ) |
| 42 | 20 41 | bitri | |- ( ( ( A .o A ) +o ( A .o 2o ) ) e. ( C .o C ) <-> ( suc A .o suc A ) C_ ( C .o C ) ) |
| 43 | 9 12 42 | 3imtr4i | |- ( A e. C -> ( ( A .o A ) +o ( A .o 2o ) ) e. ( C .o C ) ) |