This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of Enderton p. 81. (Contributed by NM, 21-Sep-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmcom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) = ( 𝐵 ·o 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·o 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝐴 ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·o 𝐵 ) = ( 𝐵 ·o 𝑥 ) ↔ ( 𝐴 ·o 𝐵 ) = ( 𝐵 ·o 𝐴 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ ω → ( 𝑥 ·o 𝐵 ) = ( 𝐵 ·o 𝑥 ) ) ↔ ( 𝐵 ∈ ω → ( 𝐴 ·o 𝐵 ) = ( 𝐵 ·o 𝐴 ) ) ) ) |
| 5 | oveq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) | |
| 6 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o ∅ ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ·o 𝐵 ) = ( 𝐵 ·o 𝑥 ) ↔ ( ∅ ·o 𝐵 ) = ( 𝐵 ·o ∅ ) ) ) |
| 8 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ·o 𝐵 ) = ( 𝑦 ·o 𝐵 ) ) | |
| 9 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝑦 ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ·o 𝐵 ) = ( 𝐵 ·o 𝑥 ) ↔ ( 𝑦 ·o 𝐵 ) = ( 𝐵 ·o 𝑦 ) ) ) |
| 11 | oveq1 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ·o 𝐵 ) = ( suc 𝑦 ·o 𝐵 ) ) | |
| 12 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o suc 𝑦 ) ) | |
| 13 | 11 12 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ·o 𝐵 ) = ( 𝐵 ·o 𝑥 ) ↔ ( suc 𝑦 ·o 𝐵 ) = ( 𝐵 ·o suc 𝑦 ) ) ) |
| 14 | nnm0r | ⊢ ( 𝐵 ∈ ω → ( ∅ ·o 𝐵 ) = ∅ ) | |
| 15 | nnm0 | ⊢ ( 𝐵 ∈ ω → ( 𝐵 ·o ∅ ) = ∅ ) | |
| 16 | 14 15 | eqtr4d | ⊢ ( 𝐵 ∈ ω → ( ∅ ·o 𝐵 ) = ( 𝐵 ·o ∅ ) ) |
| 17 | oveq1 | ⊢ ( ( 𝑦 ·o 𝐵 ) = ( 𝐵 ·o 𝑦 ) → ( ( 𝑦 ·o 𝐵 ) +o 𝐵 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) | |
| 18 | nnmsucr | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝑦 ·o 𝐵 ) = ( ( 𝑦 ·o 𝐵 ) +o 𝐵 ) ) | |
| 19 | nnmsuc | ⊢ ( ( 𝐵 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) | |
| 20 | 19 | ancoms | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
| 21 | 18 20 | eqeq12d | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( suc 𝑦 ·o 𝐵 ) = ( 𝐵 ·o suc 𝑦 ) ↔ ( ( 𝑦 ·o 𝐵 ) +o 𝐵 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) ) |
| 22 | 17 21 | imbitrrid | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝑦 ·o 𝐵 ) = ( 𝐵 ·o 𝑦 ) → ( suc 𝑦 ·o 𝐵 ) = ( 𝐵 ·o suc 𝑦 ) ) ) |
| 23 | 22 | ex | ⊢ ( 𝑦 ∈ ω → ( 𝐵 ∈ ω → ( ( 𝑦 ·o 𝐵 ) = ( 𝐵 ·o 𝑦 ) → ( suc 𝑦 ·o 𝐵 ) = ( 𝐵 ·o suc 𝑦 ) ) ) ) |
| 24 | 7 10 13 16 23 | finds2 | ⊢ ( 𝑥 ∈ ω → ( 𝐵 ∈ ω → ( 𝑥 ·o 𝐵 ) = ( 𝐵 ·o 𝑥 ) ) ) |
| 25 | 4 24 | vtoclga | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝐴 ·o 𝐵 ) = ( 𝐵 ·o 𝐴 ) ) ) |
| 26 | 25 | imp | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) = ( 𝐵 ·o 𝐴 ) ) |