This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omopthi . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omopthlem2.1 | ⊢ 𝐴 ∈ ω | |
| omopthlem2.2 | ⊢ 𝐵 ∈ ω | ||
| omopthlem2.3 | ⊢ 𝐶 ∈ ω | ||
| omopthlem2.4 | ⊢ 𝐷 ∈ ω | ||
| Assertion | omopthlem2 | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ¬ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omopthlem2.1 | ⊢ 𝐴 ∈ ω | |
| 2 | omopthlem2.2 | ⊢ 𝐵 ∈ ω | |
| 3 | omopthlem2.3 | ⊢ 𝐶 ∈ ω | |
| 4 | omopthlem2.4 | ⊢ 𝐷 ∈ ω | |
| 5 | 3 3 | nnmcli | ⊢ ( 𝐶 ·o 𝐶 ) ∈ ω |
| 6 | 5 4 | nnacli | ⊢ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ ω |
| 7 | 6 | nnoni | ⊢ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ On |
| 8 | 7 | onirri | ⊢ ¬ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) |
| 9 | eleq1 | ⊢ ( ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) → ( ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ↔ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ) ) | |
| 10 | 8 9 | mtbii | ⊢ ( ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ) |
| 11 | nnaword1 | ⊢ ( ( ( 𝐶 ·o 𝐶 ) ∈ ω ∧ 𝐷 ∈ ω ) → ( 𝐶 ·o 𝐶 ) ⊆ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ) | |
| 12 | 5 4 11 | mp2an | ⊢ ( 𝐶 ·o 𝐶 ) ⊆ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) |
| 13 | 1 2 | nnacli | ⊢ ( 𝐴 +o 𝐵 ) ∈ ω |
| 14 | 13 1 | nnacli | ⊢ ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ∈ ω |
| 15 | nnaword1 | ⊢ ( ( 𝐵 ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ∈ ω ) → 𝐵 ⊆ ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) ) | |
| 16 | 2 14 15 | mp2an | ⊢ 𝐵 ⊆ ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) |
| 17 | nnacom | ⊢ ( ( 𝐵 ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ∈ ω ) → ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) = ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) ) | |
| 18 | 2 14 17 | mp2an | ⊢ ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) = ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) |
| 19 | 16 18 | sseqtri | ⊢ 𝐵 ⊆ ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) |
| 20 | nnaass | ⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) ) ) | |
| 21 | 13 1 2 20 | mp3an | ⊢ ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) ) |
| 22 | nnm2 | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ ω → ( ( 𝐴 +o 𝐵 ) ·o 2o ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) ) ) | |
| 23 | 13 22 | ax-mp | ⊢ ( ( 𝐴 +o 𝐵 ) ·o 2o ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) ) |
| 24 | 21 23 | eqtr4i | ⊢ ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) = ( ( 𝐴 +o 𝐵 ) ·o 2o ) |
| 25 | 19 24 | sseqtri | ⊢ 𝐵 ⊆ ( ( 𝐴 +o 𝐵 ) ·o 2o ) |
| 26 | 2onn | ⊢ 2o ∈ ω | |
| 27 | 13 26 | nnmcli | ⊢ ( ( 𝐴 +o 𝐵 ) ·o 2o ) ∈ ω |
| 28 | 13 13 | nnmcli | ⊢ ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω |
| 29 | nnawordi | ⊢ ( ( 𝐵 ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) ·o 2o ) ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ) → ( 𝐵 ⊆ ( ( 𝐴 +o 𝐵 ) ·o 2o ) → ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ) ) | |
| 30 | 2 27 28 29 | mp3an | ⊢ ( 𝐵 ⊆ ( ( 𝐴 +o 𝐵 ) ·o 2o ) → ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ) |
| 31 | 25 30 | ax-mp | ⊢ ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) |
| 32 | nnacom | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ) | |
| 33 | 28 2 32 | mp2an | ⊢ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) |
| 34 | nnacom | ⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) ·o 2o ) ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) = ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ) | |
| 35 | 28 27 34 | mp2an | ⊢ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) = ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) |
| 36 | 31 33 35 | 3sstr4i | ⊢ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) |
| 37 | 13 3 | omopthlem1 | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) |
| 38 | 28 2 | nnacli | ⊢ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ω |
| 39 | 38 | nnoni | ⊢ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ On |
| 40 | 5 | nnoni | ⊢ ( 𝐶 ·o 𝐶 ) ∈ On |
| 41 | ontr2 | ⊢ ( ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ On ∧ ( 𝐶 ·o 𝐶 ) ∈ On ) → ( ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∧ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( 𝐶 ·o 𝐶 ) ) ) | |
| 42 | 39 40 41 | mp2an | ⊢ ( ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∧ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( 𝐶 ·o 𝐶 ) ) |
| 43 | 36 37 42 | sylancr | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( 𝐶 ·o 𝐶 ) ) |
| 44 | 12 43 | sselid | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ) |
| 45 | 10 44 | nsyl3 | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ¬ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ) |