This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndmul.0 | |- B = ( Base ` M ) |
|
| omndmul.1 | |- .<_ = ( le ` M ) |
||
| omndmul3.m | |- .x. = ( .g ` M ) |
||
| omndmul3.0 | |- .0. = ( 0g ` M ) |
||
| omndmul3.o | |- ( ph -> M e. oMnd ) |
||
| omndmul3.1 | |- ( ph -> N e. NN0 ) |
||
| omndmul3.2 | |- ( ph -> P e. NN0 ) |
||
| omndmul3.3 | |- ( ph -> N <_ P ) |
||
| omndmul3.4 | |- ( ph -> X e. B ) |
||
| omndmul3.5 | |- ( ph -> .0. .<_ X ) |
||
| Assertion | omndmul3 | |- ( ph -> ( N .x. X ) .<_ ( P .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul.0 | |- B = ( Base ` M ) |
|
| 2 | omndmul.1 | |- .<_ = ( le ` M ) |
|
| 3 | omndmul3.m | |- .x. = ( .g ` M ) |
|
| 4 | omndmul3.0 | |- .0. = ( 0g ` M ) |
|
| 5 | omndmul3.o | |- ( ph -> M e. oMnd ) |
|
| 6 | omndmul3.1 | |- ( ph -> N e. NN0 ) |
|
| 7 | omndmul3.2 | |- ( ph -> P e. NN0 ) |
|
| 8 | omndmul3.3 | |- ( ph -> N <_ P ) |
|
| 9 | omndmul3.4 | |- ( ph -> X e. B ) |
|
| 10 | omndmul3.5 | |- ( ph -> .0. .<_ X ) |
|
| 11 | omndmnd | |- ( M e. oMnd -> M e. Mnd ) |
|
| 12 | 5 11 | syl | |- ( ph -> M e. Mnd ) |
| 13 | 1 4 | mndidcl | |- ( M e. Mnd -> .0. e. B ) |
| 14 | 12 13 | syl | |- ( ph -> .0. e. B ) |
| 15 | nn0sub | |- ( ( N e. NN0 /\ P e. NN0 ) -> ( N <_ P <-> ( P - N ) e. NN0 ) ) |
|
| 16 | 15 | biimpa | |- ( ( ( N e. NN0 /\ P e. NN0 ) /\ N <_ P ) -> ( P - N ) e. NN0 ) |
| 17 | 6 7 8 16 | syl21anc | |- ( ph -> ( P - N ) e. NN0 ) |
| 18 | 1 3 12 17 9 | mulgnn0cld | |- ( ph -> ( ( P - N ) .x. X ) e. B ) |
| 19 | 1 3 12 6 9 | mulgnn0cld | |- ( ph -> ( N .x. X ) e. B ) |
| 20 | 1 2 3 4 | omndmul2 | |- ( ( M e. oMnd /\ ( X e. B /\ ( P - N ) e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( ( P - N ) .x. X ) ) |
| 21 | 5 9 17 10 20 | syl121anc | |- ( ph -> .0. .<_ ( ( P - N ) .x. X ) ) |
| 22 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 23 | 1 2 22 | omndadd | |- ( ( M e. oMnd /\ ( .0. e. B /\ ( ( P - N ) .x. X ) e. B /\ ( N .x. X ) e. B ) /\ .0. .<_ ( ( P - N ) .x. X ) ) -> ( .0. ( +g ` M ) ( N .x. X ) ) .<_ ( ( ( P - N ) .x. X ) ( +g ` M ) ( N .x. X ) ) ) |
| 24 | 5 14 18 19 21 23 | syl131anc | |- ( ph -> ( .0. ( +g ` M ) ( N .x. X ) ) .<_ ( ( ( P - N ) .x. X ) ( +g ` M ) ( N .x. X ) ) ) |
| 25 | 1 22 4 | mndlid | |- ( ( M e. Mnd /\ ( N .x. X ) e. B ) -> ( .0. ( +g ` M ) ( N .x. X ) ) = ( N .x. X ) ) |
| 26 | 12 19 25 | syl2anc | |- ( ph -> ( .0. ( +g ` M ) ( N .x. X ) ) = ( N .x. X ) ) |
| 27 | 1 3 22 | mulgnn0dir | |- ( ( M e. Mnd /\ ( ( P - N ) e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( ( P - N ) + N ) .x. X ) = ( ( ( P - N ) .x. X ) ( +g ` M ) ( N .x. X ) ) ) |
| 28 | 12 17 6 9 27 | syl13anc | |- ( ph -> ( ( ( P - N ) + N ) .x. X ) = ( ( ( P - N ) .x. X ) ( +g ` M ) ( N .x. X ) ) ) |
| 29 | 7 | nn0cnd | |- ( ph -> P e. CC ) |
| 30 | 6 | nn0cnd | |- ( ph -> N e. CC ) |
| 31 | 29 30 | npcand | |- ( ph -> ( ( P - N ) + N ) = P ) |
| 32 | 31 | oveq1d | |- ( ph -> ( ( ( P - N ) + N ) .x. X ) = ( P .x. X ) ) |
| 33 | 28 32 | eqtr3d | |- ( ph -> ( ( ( P - N ) .x. X ) ( +g ` M ) ( N .x. X ) ) = ( P .x. X ) ) |
| 34 | 24 26 33 | 3brtr3d | |- ( ph -> ( N .x. X ) .<_ ( P .x. X ) ) |