This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndmul.0 | ||
| omndmul.1 | |||
| omndmul3.m | |||
| omndmul3.0 | |||
| omndmul3.o | |||
| omndmul3.1 | |||
| omndmul3.2 | |||
| omndmul3.3 | |||
| omndmul3.4 | |||
| omndmul3.5 | |||
| Assertion | omndmul3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul.0 | ||
| 2 | omndmul.1 | ||
| 3 | omndmul3.m | ||
| 4 | omndmul3.0 | ||
| 5 | omndmul3.o | ||
| 6 | omndmul3.1 | ||
| 7 | omndmul3.2 | ||
| 8 | omndmul3.3 | ||
| 9 | omndmul3.4 | ||
| 10 | omndmul3.5 | ||
| 11 | omndmnd | ||
| 12 | 5 11 | syl | |
| 13 | 1 4 | mndidcl | |
| 14 | 12 13 | syl | |
| 15 | nn0sub | ||
| 16 | 15 | biimpa | |
| 17 | 6 7 8 16 | syl21anc | |
| 18 | 1 3 12 17 9 | mulgnn0cld | |
| 19 | 1 3 12 6 9 | mulgnn0cld | |
| 20 | 1 2 3 4 | omndmul2 | |
| 21 | 5 9 17 10 20 | syl121anc | |
| 22 | eqid | ||
| 23 | 1 2 22 | omndadd | |
| 24 | 5 14 18 19 21 23 | syl131anc | |
| 25 | 1 22 4 | mndlid | |
| 26 | 12 19 25 | syl2anc | |
| 27 | 1 3 22 | mulgnn0dir | |
| 28 | 12 17 6 9 27 | syl13anc | |
| 29 | 7 | nn0cnd | |
| 30 | 6 | nn0cnd | |
| 31 | 29 30 | npcand | |
| 32 | 31 | oveq1d | |
| 33 | 28 32 | eqtr3d | |
| 34 | 24 26 33 | 3brtr3d |