This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndmul.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| omndmul.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | ||
| omndmul.2 | ⊢ · = ( .g ‘ 𝑀 ) | ||
| omndmul.o | ⊢ ( 𝜑 → 𝑀 ∈ oMnd ) | ||
| omndmul.c | ⊢ ( 𝜑 → 𝑀 ∈ CMnd ) | ||
| omndmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| omndmul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| omndmul.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| omndmul.l | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| Assertion | omndmul | ⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ≤ ( 𝑁 · 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | omndmul.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | |
| 3 | omndmul.2 | ⊢ · = ( .g ‘ 𝑀 ) | |
| 4 | omndmul.o | ⊢ ( 𝜑 → 𝑀 ∈ oMnd ) | |
| 5 | omndmul.c | ⊢ ( 𝜑 → 𝑀 ∈ CMnd ) | |
| 6 | omndmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | omndmul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | omndmul.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 9 | omndmul.l | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 10 | oveq1 | ⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑋 ) = ( 0 · 𝑋 ) ) | |
| 11 | oveq1 | ⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑌 ) = ( 0 · 𝑌 ) ) | |
| 12 | 10 11 | breq12d | ⊢ ( 𝑚 = 0 → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 𝑋 ) = ( 𝑛 · 𝑋 ) ) | |
| 14 | oveq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 𝑌 ) = ( 𝑛 · 𝑌 ) ) | |
| 15 | 13 14 | breq12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 · 𝑋 ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) | |
| 17 | oveq1 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 · 𝑌 ) = ( ( 𝑛 + 1 ) · 𝑌 ) ) | |
| 18 | 16 17 | breq12d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( ( 𝑛 + 1 ) · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑌 ) ) ) |
| 19 | oveq1 | ⊢ ( 𝑚 = 𝑁 → ( 𝑚 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) | |
| 20 | oveq1 | ⊢ ( 𝑚 = 𝑁 → ( 𝑚 · 𝑌 ) = ( 𝑁 · 𝑌 ) ) | |
| 21 | 19 20 | breq12d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( 𝑁 · 𝑋 ) ≤ ( 𝑁 · 𝑌 ) ) ) |
| 22 | omndtos | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) | |
| 23 | tospos | ⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) | |
| 24 | 4 22 23 | 3syl | ⊢ ( 𝜑 → 𝑀 ∈ Poset ) |
| 25 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 26 | 1 25 3 | mulg0 | ⊢ ( 𝑌 ∈ 𝐵 → ( 0 · 𝑌 ) = ( 0g ‘ 𝑀 ) ) |
| 27 | 7 26 | syl | ⊢ ( 𝜑 → ( 0 · 𝑌 ) = ( 0g ‘ 𝑀 ) ) |
| 28 | omndmnd | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) | |
| 29 | 1 25 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 30 | 4 28 29 | 3syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 31 | 27 30 | eqeltrd | ⊢ ( 𝜑 → ( 0 · 𝑌 ) ∈ 𝐵 ) |
| 32 | 1 2 | posref | ⊢ ( ( 𝑀 ∈ Poset ∧ ( 0 · 𝑌 ) ∈ 𝐵 ) → ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) |
| 33 | 24 31 32 | syl2anc | ⊢ ( 𝜑 → ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) |
| 34 | 1 25 3 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝑀 ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝑀 ) ) |
| 36 | 26 | adantl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑌 ) = ( 0g ‘ 𝑀 ) ) |
| 37 | 35 36 | eqtr4d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0 · 𝑌 ) ) |
| 38 | 37 | breq1d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ↔ ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) ) |
| 39 | 6 7 38 | syl2anc | ⊢ ( 𝜑 → ( ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ↔ ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) ) |
| 40 | 33 39 | mpbird | ⊢ ( 𝜑 → ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ) |
| 41 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 42 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑀 ∈ oMnd ) |
| 43 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 44 | 42 28 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑀 ∈ Mnd ) |
| 45 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑛 ∈ ℕ0 ) | |
| 46 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 47 | 1 3 44 45 46 | mulgnn0cld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 48 | 1 3 44 45 43 | mulgnn0cld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( 𝑛 · 𝑌 ) ∈ 𝐵 ) |
| 49 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) | |
| 50 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑋 ≤ 𝑌 ) |
| 51 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑀 ∈ CMnd ) |
| 52 | 1 2 41 42 43 47 46 48 49 50 51 | omndadd2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 · 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ≤ ( ( 𝑛 · 𝑌 ) ( +g ‘ 𝑀 ) 𝑌 ) ) |
| 53 | 1 3 41 | mulgnn0p1 | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 · 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ) |
| 54 | 44 45 46 53 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 · 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ) |
| 55 | 1 3 41 | mulgnn0p1 | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑛 + 1 ) · 𝑌 ) = ( ( 𝑛 · 𝑌 ) ( +g ‘ 𝑀 ) 𝑌 ) ) |
| 56 | 44 45 43 55 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 + 1 ) · 𝑌 ) = ( ( 𝑛 · 𝑌 ) ( +g ‘ 𝑀 ) 𝑌 ) ) |
| 57 | 52 54 56 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 + 1 ) · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑌 ) ) |
| 58 | 12 15 18 21 40 57 | nn0indd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 𝑋 ) ≤ ( 𝑁 · 𝑌 ) ) |
| 59 | 8 58 | mpdan | ⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ≤ ( 𝑁 · 𝑌 ) ) |