This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of TakeutiZaring p. 68. (Contributed by NM, 7-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oeordsuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o suc 𝐶 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) | |
| 2 | 1 | ex | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ On ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ On ) ) |
| 4 | oewordri | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) | |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |
| 6 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) | |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
| 8 | oecl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ↑o 𝐶 ) ∈ On ) | |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ↑o 𝐶 ) ∈ On ) |
| 10 | simp1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐴 ∈ On ) | |
| 11 | omwordri | ⊢ ( ( ( 𝐴 ↑o 𝐶 ) ∈ On ∧ ( 𝐵 ↑o 𝐶 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ) ) | |
| 12 | 7 9 10 11 | syl3anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
| 13 | 5 12 | syld | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
| 14 | oesuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o suc 𝐶 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) | |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o suc 𝐶 ) = ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ) |
| 16 | 15 | sseq1d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o suc 𝐶 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ↔ ( ( 𝐴 ↑o 𝐶 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
| 17 | 13 16 | sylibrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o suc 𝐶 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ) ) |
| 18 | ne0i | ⊢ ( 𝐴 ∈ 𝐵 → 𝐵 ≠ ∅ ) | |
| 19 | on0eln0 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) | |
| 20 | 18 19 | imbitrrid | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ∅ ∈ 𝐵 ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ∅ ∈ 𝐵 ) ) |
| 22 | oen0 | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ∅ ∈ ( 𝐵 ↑o 𝐶 ) ) | |
| 23 | 22 | ex | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐵 → ∅ ∈ ( 𝐵 ↑o 𝐶 ) ) ) |
| 24 | 21 23 | syld | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ∅ ∈ ( 𝐵 ↑o 𝐶 ) ) ) |
| 25 | omordi | ⊢ ( ( ( 𝐵 ∈ On ∧ ( 𝐵 ↑o 𝐶 ) ∈ On ) ∧ ∅ ∈ ( 𝐵 ↑o 𝐶 ) ) → ( 𝐴 ∈ 𝐵 → ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐵 ) ) ) | |
| 26 | 8 25 | syldanl | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ ( 𝐵 ↑o 𝐶 ) ) → ( 𝐴 ∈ 𝐵 → ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐵 ) ) ) |
| 27 | 26 | ex | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ ( 𝐵 ↑o 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐵 ) ) ) ) |
| 28 | 27 | com23 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ∅ ∈ ( 𝐵 ↑o 𝐶 ) → ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐵 ) ) ) ) |
| 29 | 24 28 | mpdd | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐵 ) ) ) |
| 30 | 29 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐵 ) ) ) |
| 31 | oesuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ↑o suc 𝐶 ) = ( ( 𝐵 ↑o 𝐶 ) ·o 𝐵 ) ) | |
| 32 | 31 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ↑o suc 𝐶 ) = ( ( 𝐵 ↑o 𝐶 ) ·o 𝐵 ) ) |
| 33 | 32 | eleq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ↔ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐵 ) ) ) |
| 34 | 30 33 | sylibrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) |
| 35 | 17 34 | jcad | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ↑o suc 𝐶 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∧ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) ) |
| 36 | 35 | 3expa | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ↑o suc 𝐶 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∧ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) ) |
| 37 | onsucb | ⊢ ( 𝐶 ∈ On ↔ suc 𝐶 ∈ On ) | |
| 38 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ suc 𝐶 ∈ On ) → ( 𝐴 ↑o suc 𝐶 ) ∈ On ) | |
| 39 | oecl | ⊢ ( ( 𝐵 ∈ On ∧ suc 𝐶 ∈ On ) → ( 𝐵 ↑o suc 𝐶 ) ∈ On ) | |
| 40 | ontr2 | ⊢ ( ( ( 𝐴 ↑o suc 𝐶 ) ∈ On ∧ ( 𝐵 ↑o suc 𝐶 ) ∈ On ) → ( ( ( 𝐴 ↑o suc 𝐶 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∧ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) → ( 𝐴 ↑o suc 𝐶 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) | |
| 41 | 38 39 40 | syl2an | ⊢ ( ( ( 𝐴 ∈ On ∧ suc 𝐶 ∈ On ) ∧ ( 𝐵 ∈ On ∧ suc 𝐶 ∈ On ) ) → ( ( ( 𝐴 ↑o suc 𝐶 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∧ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) → ( 𝐴 ↑o suc 𝐶 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) |
| 42 | 41 | anandirs | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc 𝐶 ∈ On ) → ( ( ( 𝐴 ↑o suc 𝐶 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∧ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) → ( 𝐴 ↑o suc 𝐶 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) |
| 43 | 37 42 | sylan2b | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( ( ( 𝐴 ↑o suc 𝐶 ) ⊆ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∧ ( ( 𝐵 ↑o 𝐶 ) ·o 𝐴 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) → ( 𝐴 ↑o suc 𝐶 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) |
| 44 | 36 43 | syld | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o suc 𝐶 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) |
| 45 | 44 | exp31 | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐶 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o suc 𝐶 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) ) ) |
| 46 | 45 | com4l | ⊢ ( 𝐵 ∈ On → ( 𝐶 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ On → ( 𝐴 ↑o suc 𝐶 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) ) ) |
| 47 | 46 | imp | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ On → ( 𝐴 ↑o suc 𝐶 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) ) |
| 48 | 3 47 | mpdd | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o suc 𝐶 ) ∈ ( 𝐵 ↑o suc 𝐶 ) ) ) |