This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of TakeutiZaring p. 63. (Contributed by NM, 20-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omwordri | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o ∅ ) ) | |
| 3 | 1 2 | sseq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ↔ ( 𝐴 ·o ∅ ) ⊆ ( 𝐵 ·o ∅ ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) | |
| 5 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝑦 ) ) | |
| 6 | 4 5 | sseq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ↔ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) | |
| 8 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o suc 𝑦 ) ) | |
| 9 | 7 8 | sseq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ↔ ( 𝐴 ·o suc 𝑦 ) ⊆ ( 𝐵 ·o suc 𝑦 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐶 ) ) | |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝐶 ) ) | |
| 12 | 10 11 | sseq12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ↔ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |
| 13 | om0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) | |
| 14 | 0ss | ⊢ ∅ ⊆ ( 𝐵 ·o ∅ ) | |
| 15 | 13 14 | eqsstrdi | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) ⊆ ( 𝐵 ·o ∅ ) ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ·o ∅ ) ⊆ ( 𝐵 ·o ∅ ) ) |
| 17 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o 𝑦 ) ∈ On ) | |
| 18 | 17 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o 𝑦 ) ∈ On ) |
| 19 | omcl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o 𝑦 ) ∈ On ) | |
| 20 | 19 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
| 21 | simp1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → 𝐴 ∈ On ) | |
| 22 | oawordri | ⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ) ) | |
| 23 | 18 20 21 22 | syl3anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ) |
| 25 | 24 | adantrl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ) |
| 26 | oaword | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) ) | |
| 27 | 20 26 | syld3an3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) ) |
| 28 | 27 | biimpa | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
| 29 | 28 | adantrr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
| 30 | 25 29 | sstrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
| 31 | omsuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) | |
| 32 | 31 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
| 34 | omsuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) | |
| 35 | 34 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
| 37 | 30 33 36 | 3sstr4d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( 𝐴 ·o suc 𝑦 ) ⊆ ( 𝐵 ·o suc 𝑦 ) ) |
| 38 | 37 | exp520 | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o suc 𝑦 ) ⊆ ( 𝐵 ·o suc 𝑦 ) ) ) ) ) ) |
| 39 | 38 | com3r | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o suc 𝑦 ) ⊆ ( 𝐵 ·o suc 𝑦 ) ) ) ) ) ) |
| 40 | 39 | imp4c | ⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o suc 𝑦 ) ⊆ ( 𝐵 ·o suc 𝑦 ) ) ) ) |
| 41 | vex | ⊢ 𝑥 ∈ V | |
| 42 | ss2iun | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) | |
| 43 | omlim | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ) | |
| 44 | 43 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) → ( 𝐴 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ) |
| 45 | omlim | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐵 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) | |
| 46 | 45 | adantl | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) → ( 𝐵 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) |
| 47 | 44 46 | sseq12d | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) → ( ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) ) |
| 48 | 42 47 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ) ) |
| 49 | 48 | anandirs | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ) ) |
| 50 | 41 49 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ) ) |
| 51 | 50 | expcom | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ) ) ) |
| 52 | 51 | adantrd | ⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ) ) ) |
| 53 | 3 6 9 12 16 40 52 | tfinds3 | ⊢ ( 𝐶 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |
| 54 | 53 | expd | ⊢ ( 𝐶 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) ) |
| 55 | 54 | 3impib | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |
| 56 | 55 | 3coml | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |