This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal exponentiation. Proposition 8.35 of TakeutiZaring p. 68. (Contributed by NM, 6-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oewordri | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o ∅ ) ) | |
| 3 | 1 2 | sseq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o ∅ ) ⊆ ( 𝐵 ↑o ∅ ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) | |
| 5 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o 𝑦 ) ) | |
| 6 | 4 5 | sseq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) | |
| 8 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o suc 𝑦 ) ) | |
| 9 | 7 8 | sseq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐶 ) ) | |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 ↑o 𝑥 ) = ( 𝐵 ↑o 𝐶 ) ) | |
| 12 | 10 11 | sseq12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |
| 13 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) | |
| 14 | oe0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o ∅ ) = 1o ) |
| 16 | oe0 | ⊢ ( 𝐵 ∈ On → ( 𝐵 ↑o ∅ ) = 1o ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ↑o ∅ ) = 1o ) |
| 18 | 15 17 | eqtr4d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o ∅ ) = ( 𝐵 ↑o ∅ ) ) |
| 19 | eqimss | ⊢ ( ( 𝐴 ↑o ∅ ) = ( 𝐵 ↑o ∅ ) → ( 𝐴 ↑o ∅ ) ⊆ ( 𝐵 ↑o ∅ ) ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o ∅ ) ⊆ ( 𝐵 ↑o ∅ ) ) |
| 21 | simpl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ∈ On ) | |
| 22 | onelss | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) | |
| 23 | 22 | imp | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
| 24 | 13 21 23 | jca31 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) ) |
| 25 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) | |
| 26 | 25 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 27 | oecl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o 𝑦 ) ∈ On ) | |
| 28 | 27 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o 𝑦 ) ∈ On ) |
| 29 | simp1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → 𝐴 ∈ On ) | |
| 30 | omwordri | ⊢ ( ( ( 𝐴 ↑o 𝑦 ) ∈ On ∧ ( 𝐵 ↑o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) ) | |
| 31 | 26 28 29 30 | syl3anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) ) |
| 32 | 31 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 33 | 32 | adantrl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 34 | omwordi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐵 ↑o 𝑦 ) ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) ) | |
| 35 | 28 34 | syld3an3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) ) |
| 36 | 35 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 37 | 36 | adantrr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( ( 𝐵 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 38 | 33 37 | sstrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ⊆ ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 39 | oesuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) | |
| 40 | 39 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) |
| 42 | oesuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o suc 𝑦 ) = ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) | |
| 43 | 42 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ↑o suc 𝑦 ) = ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( 𝐵 ↑o suc 𝑦 ) = ( ( 𝐵 ↑o 𝑦 ) ·o 𝐵 ) ) |
| 45 | 38 41 44 | 3sstr4d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) |
| 46 | 45 | exp520 | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) ) ) |
| 47 | 46 | com3r | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) ) ) |
| 48 | 47 | imp4c | ⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) |
| 49 | 24 48 | syl5 | ⊢ ( 𝑦 ∈ On → ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o suc 𝑦 ) ⊆ ( 𝐵 ↑o suc 𝑦 ) ) ) ) |
| 50 | vex | ⊢ 𝑥 ∈ V | |
| 51 | limelon | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) | |
| 52 | 50 51 | mpan | ⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 53 | 0ellim | ⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) | |
| 54 | oe0m1 | ⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ ( ∅ ↑o 𝑥 ) = ∅ ) ) | |
| 55 | 54 | biimpa | ⊢ ( ( 𝑥 ∈ On ∧ ∅ ∈ 𝑥 ) → ( ∅ ↑o 𝑥 ) = ∅ ) |
| 56 | 52 53 55 | syl2anc | ⊢ ( Lim 𝑥 → ( ∅ ↑o 𝑥 ) = ∅ ) |
| 57 | 0ss | ⊢ ∅ ⊆ ( 𝐵 ↑o 𝑥 ) | |
| 58 | 56 57 | eqsstrdi | ⊢ ( Lim 𝑥 → ( ∅ ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) |
| 59 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( ∅ ↑o 𝑥 ) ) | |
| 60 | 59 | sseq1d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ( ∅ ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
| 61 | 58 60 | imbitrrid | ⊢ ( 𝐴 = ∅ → ( Lim 𝑥 → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
| 62 | 61 | adantl | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( Lim 𝑥 → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
| 63 | 62 | a1dd | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
| 64 | ss2iun | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) | |
| 65 | oelim | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) | |
| 66 | 50 65 | mpanlr1 | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 67 | 66 | an32s | ⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 68 | 67 | adantllr | ⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 69 | 21 | anim1i | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ Lim 𝑥 ) → ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) |
| 70 | ne0i | ⊢ ( 𝐴 ∈ 𝐵 → 𝐵 ≠ ∅ ) | |
| 71 | on0eln0 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) | |
| 72 | 70 71 | imbitrrid | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ∅ ∈ 𝐵 ) ) |
| 73 | 72 | imp | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ∅ ∈ 𝐵 ) |
| 74 | 73 | adantr | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ Lim 𝑥 ) → ∅ ∈ 𝐵 ) |
| 75 | oelim | ⊢ ( ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐵 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) | |
| 76 | 50 75 | mpanlr1 | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
| 77 | 69 74 76 | syl2anc | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ∧ Lim 𝑥 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
| 78 | 77 | ad4ant24 | ⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( 𝐵 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) |
| 79 | 68 78 | sseq12d | ⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 ↑o 𝑦 ) ) ) |
| 80 | 64 79 | imbitrrid | ⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) |
| 81 | 80 | ex | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
| 82 | 63 81 | oe0lem | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
| 83 | 13 | ancri | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) ) ) |
| 84 | 82 83 | syl11 | ⊢ ( Lim 𝑥 → ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐵 ↑o 𝑦 ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( 𝐵 ↑o 𝑥 ) ) ) ) |
| 85 | 3 6 9 12 20 49 84 | tfinds3 | ⊢ ( 𝐶 ∈ On → ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |
| 86 | 85 | expd | ⊢ ( 𝐶 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) ) |
| 87 | 86 | impcom | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ⊆ ( 𝐵 ↑o 𝐶 ) ) ) |