This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of ordinal exponentiation with a successor exponent. Corollary 8.36 of TakeutiZaring p. 68. (Contributed by NM, 7-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oeordsuc | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> ( A ^o suc C ) e. ( B ^o suc C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | |- ( ( B e. On /\ A e. B ) -> A e. On ) |
|
| 2 | 1 | ex | |- ( B e. On -> ( A e. B -> A e. On ) ) |
| 3 | 2 | adantr | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> A e. On ) ) |
| 4 | oewordri | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> ( A ^o C ) C_ ( B ^o C ) ) ) |
|
| 5 | 4 | 3adant1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( A ^o C ) C_ ( B ^o C ) ) ) |
| 6 | oecl | |- ( ( A e. On /\ C e. On ) -> ( A ^o C ) e. On ) |
|
| 7 | 6 | 3adant2 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A ^o C ) e. On ) |
| 8 | oecl | |- ( ( B e. On /\ C e. On ) -> ( B ^o C ) e. On ) |
|
| 9 | 8 | 3adant1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B ^o C ) e. On ) |
| 10 | simp1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> A e. On ) |
|
| 11 | omwordri | |- ( ( ( A ^o C ) e. On /\ ( B ^o C ) e. On /\ A e. On ) -> ( ( A ^o C ) C_ ( B ^o C ) -> ( ( A ^o C ) .o A ) C_ ( ( B ^o C ) .o A ) ) ) |
|
| 12 | 7 9 10 11 | syl3anc | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A ^o C ) C_ ( B ^o C ) -> ( ( A ^o C ) .o A ) C_ ( ( B ^o C ) .o A ) ) ) |
| 13 | 5 12 | syld | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( ( A ^o C ) .o A ) C_ ( ( B ^o C ) .o A ) ) ) |
| 14 | oesuc | |- ( ( A e. On /\ C e. On ) -> ( A ^o suc C ) = ( ( A ^o C ) .o A ) ) |
|
| 15 | 14 | 3adant2 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A ^o suc C ) = ( ( A ^o C ) .o A ) ) |
| 16 | 15 | sseq1d | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A ^o suc C ) C_ ( ( B ^o C ) .o A ) <-> ( ( A ^o C ) .o A ) C_ ( ( B ^o C ) .o A ) ) ) |
| 17 | 13 16 | sylibrd | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( A ^o suc C ) C_ ( ( B ^o C ) .o A ) ) ) |
| 18 | ne0i | |- ( A e. B -> B =/= (/) ) |
|
| 19 | on0eln0 | |- ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) |
|
| 20 | 18 19 | imbitrrid | |- ( B e. On -> ( A e. B -> (/) e. B ) ) |
| 21 | 20 | adantr | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> (/) e. B ) ) |
| 22 | oen0 | |- ( ( ( B e. On /\ C e. On ) /\ (/) e. B ) -> (/) e. ( B ^o C ) ) |
|
| 23 | 22 | ex | |- ( ( B e. On /\ C e. On ) -> ( (/) e. B -> (/) e. ( B ^o C ) ) ) |
| 24 | 21 23 | syld | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> (/) e. ( B ^o C ) ) ) |
| 25 | omordi | |- ( ( ( B e. On /\ ( B ^o C ) e. On ) /\ (/) e. ( B ^o C ) ) -> ( A e. B -> ( ( B ^o C ) .o A ) e. ( ( B ^o C ) .o B ) ) ) |
|
| 26 | 8 25 | syldanl | |- ( ( ( B e. On /\ C e. On ) /\ (/) e. ( B ^o C ) ) -> ( A e. B -> ( ( B ^o C ) .o A ) e. ( ( B ^o C ) .o B ) ) ) |
| 27 | 26 | ex | |- ( ( B e. On /\ C e. On ) -> ( (/) e. ( B ^o C ) -> ( A e. B -> ( ( B ^o C ) .o A ) e. ( ( B ^o C ) .o B ) ) ) ) |
| 28 | 27 | com23 | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> ( (/) e. ( B ^o C ) -> ( ( B ^o C ) .o A ) e. ( ( B ^o C ) .o B ) ) ) ) |
| 29 | 24 28 | mpdd | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> ( ( B ^o C ) .o A ) e. ( ( B ^o C ) .o B ) ) ) |
| 30 | 29 | 3adant1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( ( B ^o C ) .o A ) e. ( ( B ^o C ) .o B ) ) ) |
| 31 | oesuc | |- ( ( B e. On /\ C e. On ) -> ( B ^o suc C ) = ( ( B ^o C ) .o B ) ) |
|
| 32 | 31 | 3adant1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B ^o suc C ) = ( ( B ^o C ) .o B ) ) |
| 33 | 32 | eleq2d | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( ( B ^o C ) .o A ) e. ( B ^o suc C ) <-> ( ( B ^o C ) .o A ) e. ( ( B ^o C ) .o B ) ) ) |
| 34 | 30 33 | sylibrd | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( ( B ^o C ) .o A ) e. ( B ^o suc C ) ) ) |
| 35 | 17 34 | jcad | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( ( A ^o suc C ) C_ ( ( B ^o C ) .o A ) /\ ( ( B ^o C ) .o A ) e. ( B ^o suc C ) ) ) ) |
| 36 | 35 | 3expa | |- ( ( ( A e. On /\ B e. On ) /\ C e. On ) -> ( A e. B -> ( ( A ^o suc C ) C_ ( ( B ^o C ) .o A ) /\ ( ( B ^o C ) .o A ) e. ( B ^o suc C ) ) ) ) |
| 37 | onsucb | |- ( C e. On <-> suc C e. On ) |
|
| 38 | oecl | |- ( ( A e. On /\ suc C e. On ) -> ( A ^o suc C ) e. On ) |
|
| 39 | oecl | |- ( ( B e. On /\ suc C e. On ) -> ( B ^o suc C ) e. On ) |
|
| 40 | ontr2 | |- ( ( ( A ^o suc C ) e. On /\ ( B ^o suc C ) e. On ) -> ( ( ( A ^o suc C ) C_ ( ( B ^o C ) .o A ) /\ ( ( B ^o C ) .o A ) e. ( B ^o suc C ) ) -> ( A ^o suc C ) e. ( B ^o suc C ) ) ) |
|
| 41 | 38 39 40 | syl2an | |- ( ( ( A e. On /\ suc C e. On ) /\ ( B e. On /\ suc C e. On ) ) -> ( ( ( A ^o suc C ) C_ ( ( B ^o C ) .o A ) /\ ( ( B ^o C ) .o A ) e. ( B ^o suc C ) ) -> ( A ^o suc C ) e. ( B ^o suc C ) ) ) |
| 42 | 41 | anandirs | |- ( ( ( A e. On /\ B e. On ) /\ suc C e. On ) -> ( ( ( A ^o suc C ) C_ ( ( B ^o C ) .o A ) /\ ( ( B ^o C ) .o A ) e. ( B ^o suc C ) ) -> ( A ^o suc C ) e. ( B ^o suc C ) ) ) |
| 43 | 37 42 | sylan2b | |- ( ( ( A e. On /\ B e. On ) /\ C e. On ) -> ( ( ( A ^o suc C ) C_ ( ( B ^o C ) .o A ) /\ ( ( B ^o C ) .o A ) e. ( B ^o suc C ) ) -> ( A ^o suc C ) e. ( B ^o suc C ) ) ) |
| 44 | 36 43 | syld | |- ( ( ( A e. On /\ B e. On ) /\ C e. On ) -> ( A e. B -> ( A ^o suc C ) e. ( B ^o suc C ) ) ) |
| 45 | 44 | exp31 | |- ( A e. On -> ( B e. On -> ( C e. On -> ( A e. B -> ( A ^o suc C ) e. ( B ^o suc C ) ) ) ) ) |
| 46 | 45 | com4l | |- ( B e. On -> ( C e. On -> ( A e. B -> ( A e. On -> ( A ^o suc C ) e. ( B ^o suc C ) ) ) ) ) |
| 47 | 46 | imp | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> ( A e. On -> ( A ^o suc C ) e. ( B ^o suc C ) ) ) ) |
| 48 | 3 47 | mpdd | |- ( ( B e. On /\ C e. On ) -> ( A e. B -> ( A ^o suc C ) e. ( B ^o suc C ) ) ) |