This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | odmodnn0 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐺 ∈ Mnd ) | |
| 6 | nnnn0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 8 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℕ0 ) | |
| 9 | 8 | nn0red | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 10 | nnrp | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) |
| 12 | 9 11 | rerpdivcld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ∈ ℝ ) |
| 13 | 8 | nn0ge0d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 0 ≤ 𝑁 ) |
| 14 | nnre | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) | |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 16 | nngt0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → 0 < ( 𝑂 ‘ 𝐴 ) ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 0 < ( 𝑂 ‘ 𝐴 ) ) |
| 18 | divge0 | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁 ) ∧ ( ( 𝑂 ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( 𝑂 ‘ 𝐴 ) ) ) → 0 ≤ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) | |
| 19 | 9 13 15 17 18 | syl22anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 0 ≤ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) |
| 20 | flge0nn0 | ⊢ ( ( ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) → ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℕ0 ) | |
| 21 | 12 19 20 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℕ0 ) |
| 22 | 7 21 | nn0mulcld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℕ0 ) |
| 23 | 8 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 24 | zmodcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) | |
| 25 | 23 24 | sylancom | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 26 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐴 ∈ 𝑋 ) | |
| 27 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 28 | 1 3 27 | mulgnn0dir | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℕ0 ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) + ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) · 𝐴 ) = ( ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) ( +g ‘ 𝐺 ) ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ) |
| 29 | 5 22 25 26 28 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) + ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) · 𝐴 ) = ( ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) ( +g ‘ 𝐺 ) ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ) |
| 30 | 15 | recnd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
| 31 | 21 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 32 | 30 31 | mulcomd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 33 | 32 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) = ( ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
| 34 | 1 3 | mulgnn0ass | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℕ0 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) ) |
| 35 | 5 21 7 26 34 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) ) |
| 36 | 1 2 3 4 | odid | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 37 | 26 36 | syl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 38 | 37 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · 0 ) ) |
| 39 | 1 3 4 | mulgnn0z | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℕ0 ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · 0 ) = 0 ) |
| 40 | 5 21 39 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · 0 ) = 0 ) |
| 41 | 38 40 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) = 0 ) |
| 42 | 35 41 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) |
| 43 | 33 42 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) = 0 ) |
| 44 | 43 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) ( +g ‘ 𝐺 ) ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) = ( 0 ( +g ‘ 𝐺 ) ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ) |
| 45 | 29 44 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) + ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) · 𝐴 ) = ( 0 ( +g ‘ 𝐺 ) ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ) |
| 46 | modval | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 − ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ) ) | |
| 47 | 9 11 46 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 − ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ) ) |
| 48 | 47 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) + ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) = ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) + ( 𝑁 − ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ) ) ) |
| 49 | 22 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 50 | 8 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 51 | 49 50 | pncan3d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) + ( 𝑁 − ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ) ) = 𝑁 ) |
| 52 | 48 51 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) + ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) = 𝑁 ) |
| 53 | 52 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) + ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
| 54 | 1 3 5 25 26 | mulgnn0cld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ∈ 𝑋 ) |
| 55 | 1 27 4 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ∈ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
| 56 | 5 54 55 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 0 ( +g ‘ 𝐺 ) ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
| 57 | 45 53 56 | 3eqtr3rd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |