This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | odid | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | oveq1 | ⊢ ( ( 𝑂 ‘ 𝐴 ) = 0 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0 · 𝐴 ) ) | |
| 6 | 1 4 3 | mulg0 | ⊢ ( 𝐴 ∈ 𝑋 → ( 0 · 𝐴 ) = 0 ) |
| 7 | 5 6 | sylan9eqr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 8 | 7 | adantrr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = ∅ ) ) → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 9 | oveq1 | ⊢ ( 𝑦 = ( 𝑂 ‘ 𝐴 ) → ( 𝑦 · 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑦 = ( 𝑂 ‘ 𝐴 ) → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) ) |
| 11 | 10 | elrab | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∧ ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) ) |
| 12 | 11 | simprbi | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 14 | eqid | ⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } | |
| 15 | 1 3 4 2 14 | odlem1 | ⊢ ( 𝐴 ∈ 𝑋 → ( ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = ∅ ) ∨ ( 𝑂 ‘ 𝐴 ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) ) |
| 16 | 8 13 15 | mpjaodan | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |