This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mndodcong . (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| mndodconglem.1 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| mndodconglem.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| mndodconglem.3 | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | ||
| mndodconglem.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | ||
| mndodconglem.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| mndodconglem.6 | ⊢ ( 𝜑 → 𝑀 < ( 𝑂 ‘ 𝐴 ) ) | ||
| mndodconglem.7 | ⊢ ( 𝜑 → 𝑁 < ( 𝑂 ‘ 𝐴 ) ) | ||
| mndodconglem.8 | ⊢ ( 𝜑 → ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) | ||
| Assertion | mndodconglem | ⊢ ( ( 𝜑 ∧ 𝑀 ≤ 𝑁 ) → 𝑀 = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | mndodconglem.1 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 6 | mndodconglem.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 7 | mndodconglem.3 | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | |
| 8 | mndodconglem.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | |
| 9 | mndodconglem.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 10 | mndodconglem.6 | ⊢ ( 𝜑 → 𝑀 < ( 𝑂 ‘ 𝐴 ) ) | |
| 11 | mndodconglem.7 | ⊢ ( 𝜑 → 𝑁 < ( 𝑂 ‘ 𝐴 ) ) | |
| 12 | mndodconglem.8 | ⊢ ( 𝜑 → ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) | |
| 13 | 7 | nnred | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 14 | 13 | recnd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
| 15 | 8 | nn0red | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 16 | 15 | recnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 17 | 9 | nn0red | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 18 | 17 | recnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 19 | 14 16 18 | addsubassd | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) − 𝑁 ) = ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) |
| 20 | 7 | nnzd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 21 | 8 | nn0zd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 22 | 20 21 | zaddcld | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ∈ ℤ ) |
| 23 | 22 | zred | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ∈ ℝ ) |
| 24 | nn0addge1 | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ) | |
| 25 | 13 8 24 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ) |
| 26 | 17 13 23 11 25 | ltletrd | ⊢ ( 𝜑 → 𝑁 < ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ) |
| 27 | 9 | nn0zd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 28 | znnsub | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ∈ ℤ ) → ( 𝑁 < ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ↔ ( ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) − 𝑁 ) ∈ ℕ ) ) | |
| 29 | 27 22 28 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 < ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) ↔ ( ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) − 𝑁 ) ∈ ℕ ) ) |
| 30 | 26 29 | mpbid | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) + 𝑀 ) − 𝑁 ) ∈ ℕ ) |
| 31 | 19 30 | eqeltrrd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ∈ ℕ ) |
| 32 | 14 16 18 | addsub12d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) = ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) ) |
| 33 | 32 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) · 𝐴 ) = ( ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) ) |
| 34 | 12 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑀 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) = ( ( 𝑁 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) ) |
| 35 | znnsub | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( 𝑁 < ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ ) ) | |
| 36 | 27 20 35 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 < ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ ) ) |
| 37 | 11 36 | mpbid | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ ) |
| 38 | 37 | nnnn0d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ0 ) |
| 39 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 40 | 1 3 39 | mulgnn0dir | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑀 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) ) |
| 41 | 5 8 38 6 40 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑀 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) ) |
| 42 | 1 3 39 | mulgnn0dir | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑁 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) ) |
| 43 | 5 9 38 6 42 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑁 · 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) · 𝐴 ) ) ) |
| 44 | 34 41 43 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) ) |
| 45 | 18 14 | pncan3d | ⊢ ( 𝜑 → ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 46 | 45 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) |
| 47 | 1 2 3 4 | odid | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 48 | 6 47 | syl | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 49 | 46 48 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑁 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = 0 ) |
| 50 | 44 49 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑀 + ( ( 𝑂 ‘ 𝐴 ) − 𝑁 ) ) · 𝐴 ) = 0 ) |
| 51 | 33 50 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) · 𝐴 ) = 0 ) |
| 52 | 1 2 3 4 | odlem2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ∈ ℕ ∧ ( ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) ) |
| 53 | 6 31 51 52 | syl3anc | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) ) |
| 54 | elfzle2 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) → ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) | |
| 55 | 53 54 | syl | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) |
| 56 | 21 27 | zsubcld | ⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
| 57 | 56 | zred | ⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) ∈ ℝ ) |
| 58 | 13 57 | addge01d | ⊢ ( 𝜑 → ( 0 ≤ ( 𝑀 − 𝑁 ) ↔ ( 𝑂 ‘ 𝐴 ) ≤ ( ( 𝑂 ‘ 𝐴 ) + ( 𝑀 − 𝑁 ) ) ) ) |
| 59 | 55 58 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( 𝑀 − 𝑁 ) ) |
| 60 | 15 17 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( 𝑀 − 𝑁 ) ↔ 𝑁 ≤ 𝑀 ) ) |
| 61 | 59 60 | mpbid | ⊢ ( 𝜑 → 𝑁 ≤ 𝑀 ) |
| 62 | 15 17 | letri3d | ⊢ ( 𝜑 → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 63 | 62 | biimprd | ⊢ ( 𝜑 → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) → 𝑀 = 𝑁 ) ) |
| 64 | 61 63 | mpan2d | ⊢ ( 𝜑 → ( 𝑀 ≤ 𝑁 → 𝑀 = 𝑁 ) ) |
| 65 | 64 | imp | ⊢ ( ( 𝜑 ∧ 𝑀 ≤ 𝑁 ) → 𝑀 = 𝑁 ) |