This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| odid.3 | |- .x. = ( .g ` G ) |
||
| odid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | odmodnn0 | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) = ( N .x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | odid.3 | |- .x. = ( .g ` G ) |
|
| 4 | odid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | simpl1 | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> G e. Mnd ) |
|
| 6 | nnnn0 | |- ( ( O ` A ) e. NN -> ( O ` A ) e. NN0 ) |
|
| 7 | 6 | adantl | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. NN0 ) |
| 8 | simpl3 | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. NN0 ) |
|
| 9 | 8 | nn0red | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. RR ) |
| 10 | nnrp | |- ( ( O ` A ) e. NN -> ( O ` A ) e. RR+ ) |
|
| 11 | 10 | adantl | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. RR+ ) |
| 12 | 9 11 | rerpdivcld | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( N / ( O ` A ) ) e. RR ) |
| 13 | 8 | nn0ge0d | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> 0 <_ N ) |
| 14 | nnre | |- ( ( O ` A ) e. NN -> ( O ` A ) e. RR ) |
|
| 15 | 14 | adantl | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. RR ) |
| 16 | nngt0 | |- ( ( O ` A ) e. NN -> 0 < ( O ` A ) ) |
|
| 17 | 16 | adantl | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> 0 < ( O ` A ) ) |
| 18 | divge0 | |- ( ( ( N e. RR /\ 0 <_ N ) /\ ( ( O ` A ) e. RR /\ 0 < ( O ` A ) ) ) -> 0 <_ ( N / ( O ` A ) ) ) |
|
| 19 | 9 13 15 17 18 | syl22anc | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> 0 <_ ( N / ( O ` A ) ) ) |
| 20 | flge0nn0 | |- ( ( ( N / ( O ` A ) ) e. RR /\ 0 <_ ( N / ( O ` A ) ) ) -> ( |_ ` ( N / ( O ` A ) ) ) e. NN0 ) |
|
| 21 | 12 19 20 | syl2anc | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( |_ ` ( N / ( O ` A ) ) ) e. NN0 ) |
| 22 | 7 21 | nn0mulcld | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. NN0 ) |
| 23 | 8 | nn0zd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. ZZ ) |
| 24 | zmodcl | |- ( ( N e. ZZ /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) e. NN0 ) |
|
| 25 | 23 24 | sylancom | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) e. NN0 ) |
| 26 | simpl2 | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> A e. X ) |
|
| 27 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 28 | 1 3 27 | mulgnn0dir | |- ( ( G e. Mnd /\ ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. NN0 /\ ( N mod ( O ` A ) ) e. NN0 /\ A e. X ) ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) |
| 29 | 5 22 25 26 28 | syl13anc | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) |
| 30 | 15 | recnd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. CC ) |
| 31 | 21 | nn0cnd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( |_ ` ( N / ( O ` A ) ) ) e. CC ) |
| 32 | 30 31 | mulcomd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) ) |
| 33 | 32 | oveq1d | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) = ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) ) |
| 34 | 1 3 | mulgnn0ass | |- ( ( G e. Mnd /\ ( ( |_ ` ( N / ( O ` A ) ) ) e. NN0 /\ ( O ` A ) e. NN0 /\ A e. X ) ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) ) |
| 35 | 5 21 7 26 34 | syl13anc | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) ) |
| 36 | 1 2 3 4 | odid | |- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |
| 37 | 26 36 | syl | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) .x. A ) = .0. ) |
| 38 | 37 | oveq2d | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) ) |
| 39 | 1 3 4 | mulgnn0z | |- ( ( G e. Mnd /\ ( |_ ` ( N / ( O ` A ) ) ) e. NN0 ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) = .0. ) |
| 40 | 5 21 39 | syl2anc | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) = .0. ) |
| 41 | 38 40 | eqtrd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) = .0. ) |
| 42 | 35 41 | eqtrd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = .0. ) |
| 43 | 33 42 | eqtrd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) = .0. ) |
| 44 | 43 | oveq1d | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) = ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) |
| 45 | 29 44 | eqtrd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) |
| 46 | modval | |- ( ( N e. RR /\ ( O ` A ) e. RR+ ) -> ( N mod ( O ` A ) ) = ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) |
|
| 47 | 9 11 46 | syl2anc | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) = ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) |
| 48 | 47 | oveq2d | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) = ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) ) |
| 49 | 22 | nn0cnd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. CC ) |
| 50 | 8 | nn0cnd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. CC ) |
| 51 | 49 50 | pncan3d | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) = N ) |
| 52 | 48 51 | eqtrd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) = N ) |
| 53 | 52 | oveq1d | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( N .x. A ) ) |
| 54 | 1 3 5 25 26 | mulgnn0cld | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) e. X ) |
| 55 | 1 27 4 | mndlid | |- ( ( G e. Mnd /\ ( ( N mod ( O ` A ) ) .x. A ) e. X ) -> ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) = ( ( N mod ( O ` A ) ) .x. A ) ) |
| 56 | 5 54 55 | syl2anc | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) = ( ( N mod ( O ` A ) ) .x. A ) ) |
| 57 | 45 53 56 | 3eqtr3rd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) = ( N .x. A ) ) |