This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any positive annihilator of a group element is an upper bound on the (positive) order of the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | odlem2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | oveq1 | ⊢ ( 𝑦 = 𝑁 → ( 𝑦 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 7 | 6 | elrab | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ↔ ( 𝑁 ∈ ℕ ∧ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 8 | eqid | ⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } | |
| 9 | 1 3 4 2 8 | odval | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ) ) |
| 10 | n0i | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = ∅ ) | |
| 11 | 10 | iffalsed | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ) = inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ) |
| 12 | 9 11 | sylan9eq | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → ( 𝑂 ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ) |
| 13 | ssrab2 | ⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ⊆ ℕ | |
| 14 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 15 | 13 14 | sseqtri | ⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) |
| 16 | ne0i | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ≠ ∅ ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ≠ ∅ ) |
| 18 | infssuzcl | ⊢ ( ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ≠ ∅ ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) | |
| 19 | 15 17 18 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) |
| 20 | 13 19 | sselid | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ℕ ) |
| 21 | infssuzle | ⊢ ( ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) | |
| 22 | 15 21 | mpan | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) |
| 23 | 22 | adantl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) |
| 24 | elrabi | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → 𝑁 ∈ ℕ ) | |
| 25 | 24 | nnzd | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → 𝑁 ∈ ℤ ) |
| 26 | fznn | ⊢ ( 𝑁 ∈ ℤ → ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ↔ ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ℕ ∧ inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } → ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ↔ ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ℕ ∧ inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ↔ ( inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ℕ ∧ inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ≤ 𝑁 ) ) ) |
| 29 | 20 23 28 | mpbir2and | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } , ℝ , < ) ∈ ( 1 ... 𝑁 ) ) |
| 30 | 12 29 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝐴 ) = 0 } ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |
| 31 | 7 30 | sylan2br | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 ∈ ℕ ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |
| 32 | 31 | 3impb | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |