This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | odmod | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℤ ) | |
| 6 | 5 | zred | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 7 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | |
| 8 | 7 | nnrpd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) |
| 9 | modval | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 − ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ) ) | |
| 10 | 6 8 9 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 − ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ) ) |
| 11 | 10 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 − ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ) · 𝐴 ) ) |
| 12 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐺 ∈ Grp ) | |
| 13 | 7 | nnzd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 14 | 6 7 | nndivred | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ∈ ℝ ) |
| 15 | 14 | flcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℤ ) |
| 16 | 13 15 | zmulcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℤ ) |
| 17 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐴 ∈ 𝑋 ) | |
| 18 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 19 | 1 3 18 | mulgsubdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑁 − ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ) · 𝐴 ) = ( ( 𝑁 · 𝐴 ) ( -g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) ) ) |
| 20 | 12 5 16 17 19 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 − ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) ) · 𝐴 ) = ( ( 𝑁 · 𝐴 ) ( -g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) ) ) |
| 21 | nncn | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) | |
| 22 | zcn | ⊢ ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℤ → ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 23 | mulcom | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℂ ∧ ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℂ ) → ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) ) | |
| 24 | 21 22 23 | syl2an | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∧ ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 25 | 7 15 24 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 26 | 25 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) = ( ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
| 27 | 1 3 | mulgass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) ) |
| 28 | 12 15 13 17 27 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) ) |
| 29 | 1 2 3 4 | odid | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 30 | 17 29 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = 0 ) |
| 31 | 30 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) = ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · 0 ) ) |
| 32 | 1 3 4 | mulgz | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℤ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · 0 ) = 0 ) |
| 33 | 12 15 32 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · 0 ) = 0 ) |
| 34 | 31 33 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) = 0 ) |
| 35 | 26 28 34 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) = 0 ) |
| 36 | 35 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 · 𝐴 ) ( -g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) ) = ( ( 𝑁 · 𝐴 ) ( -g ‘ 𝐺 ) 0 ) ) |
| 37 | 1 3 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 · 𝐴 ) ∈ 𝑋 ) |
| 38 | 12 5 17 37 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 · 𝐴 ) ∈ 𝑋 ) |
| 39 | 1 4 18 | grpsubid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 · 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁 · 𝐴 ) ( -g ‘ 𝐺 ) 0 ) = ( 𝑁 · 𝐴 ) ) |
| 40 | 12 38 39 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 · 𝐴 ) ( -g ‘ 𝐺 ) 0 ) = ( 𝑁 · 𝐴 ) ) |
| 41 | 36 40 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 · 𝐴 ) ( -g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 ) · ( ⌊ ‘ ( 𝑁 / ( 𝑂 ‘ 𝐴 ) ) ) ) · 𝐴 ) ) = ( 𝑁 · 𝐴 ) ) |
| 42 | 11 20 41 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |