This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any group element is annihilated by any multiple of its order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Revised by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | oddvdsi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) → ( 𝑁 · 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | simp3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) | |
| 6 | dvdszrcl | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 → ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 7 | 6 | simprd | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 → 𝑁 ∈ ℤ ) |
| 8 | 1 2 3 4 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 9 | 7 8 | syl3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 10 | 5 9 | mpbid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) → ( 𝑁 · 𝐴 ) = 0 ) |