This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonzero multiple of an element is zero, the element has positive order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Revised by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | odnncl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → 𝐴 ∈ 𝑋 ) | |
| 6 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → 𝑁 ≠ 0 ) | |
| 7 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → 𝑁 ∈ ℤ ) | |
| 8 | 7 | zcnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → 𝑁 ∈ ℂ ) |
| 9 | abs00 | ⊢ ( 𝑁 ∈ ℂ → ( ( abs ‘ 𝑁 ) = 0 ↔ 𝑁 = 0 ) ) | |
| 10 | 9 | necon3bbid | ⊢ ( 𝑁 ∈ ℂ → ( ¬ ( abs ‘ 𝑁 ) = 0 ↔ 𝑁 ≠ 0 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( ¬ ( abs ‘ 𝑁 ) = 0 ↔ 𝑁 ≠ 0 ) ) |
| 12 | 6 11 | mpbird | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ¬ ( abs ‘ 𝑁 ) = 0 ) |
| 13 | nn0abscl | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℕ0 ) | |
| 14 | 7 13 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( abs ‘ 𝑁 ) ∈ ℕ0 ) |
| 15 | elnn0 | ⊢ ( ( abs ‘ 𝑁 ) ∈ ℕ0 ↔ ( ( abs ‘ 𝑁 ) ∈ ℕ ∨ ( abs ‘ 𝑁 ) = 0 ) ) | |
| 16 | 14 15 | sylib | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( ( abs ‘ 𝑁 ) ∈ ℕ ∨ ( abs ‘ 𝑁 ) = 0 ) ) |
| 17 | 16 | ord | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( ¬ ( abs ‘ 𝑁 ) ∈ ℕ → ( abs ‘ 𝑁 ) = 0 ) ) |
| 18 | 12 17 | mt3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( abs ‘ 𝑁 ) ∈ ℕ ) |
| 19 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( 𝑁 · 𝐴 ) = 0 ) | |
| 20 | oveq1 | ⊢ ( ( abs ‘ 𝑁 ) = 𝑁 → ( ( abs ‘ 𝑁 ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) | |
| 21 | 20 | eqeq1d | ⊢ ( ( abs ‘ 𝑁 ) = 𝑁 → ( ( ( abs ‘ 𝑁 ) · 𝐴 ) = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 22 | 19 21 | syl5ibrcom | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( ( abs ‘ 𝑁 ) = 𝑁 → ( ( abs ‘ 𝑁 ) · 𝐴 ) = 0 ) ) |
| 23 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → 𝐺 ∈ Grp ) | |
| 24 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 25 | 1 3 24 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( - 𝑁 · 𝐴 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝐴 ) ) ) |
| 26 | 23 7 5 25 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( - 𝑁 · 𝐴 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝐴 ) ) ) |
| 27 | 19 | fveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝐴 ) ) = ( ( invg ‘ 𝐺 ) ‘ 0 ) ) |
| 28 | 4 24 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 29 | 23 28 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 30 | 26 27 29 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( - 𝑁 · 𝐴 ) = 0 ) |
| 31 | oveq1 | ⊢ ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( abs ‘ 𝑁 ) · 𝐴 ) = ( - 𝑁 · 𝐴 ) ) | |
| 32 | 31 | eqeq1d | ⊢ ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( ( abs ‘ 𝑁 ) · 𝐴 ) = 0 ↔ ( - 𝑁 · 𝐴 ) = 0 ) ) |
| 33 | 30 32 | syl5ibrcom | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( abs ‘ 𝑁 ) · 𝐴 ) = 0 ) ) |
| 34 | 7 | zred | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → 𝑁 ∈ ℝ ) |
| 35 | 34 | absord | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) |
| 36 | 22 33 35 | mpjaod | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( ( abs ‘ 𝑁 ) · 𝐴 ) = 0 ) |
| 37 | 1 2 3 4 | odlem2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( abs ‘ 𝑁 ) ∈ ℕ ∧ ( ( abs ‘ 𝑁 ) · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( abs ‘ 𝑁 ) ) ) |
| 38 | 5 18 36 37 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( abs ‘ 𝑁 ) ) ) |
| 39 | elfznn | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( abs ‘ 𝑁 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | |
| 40 | 38 39 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |