This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddprmdvds | ⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2prm | ⊢ 2 ∈ ℙ | |
| 2 | pcndvds2 | ⊢ ( ( 2 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐾 ∈ ℕ → ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 4 | pcdvds | ⊢ ( ( 2 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 ) | |
| 5 | 1 4 | mpan | ⊢ ( 𝐾 ∈ ℕ → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 ) |
| 6 | 2nn | ⊢ 2 ∈ ℕ | |
| 7 | 6 | a1i | ⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℕ ) |
| 8 | 1 | a1i | ⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℙ ) |
| 9 | id | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ ) | |
| 10 | 8 9 | pccld | ⊢ ( 𝐾 ∈ ℕ → ( 2 pCnt 𝐾 ) ∈ ℕ0 ) |
| 11 | 7 10 | nnexpcld | ⊢ ( 𝐾 ∈ ℕ → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ ) |
| 12 | nndivdvds | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 ↔ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ) ) | |
| 13 | 11 12 | mpdan | ⊢ ( 𝐾 ∈ ℕ → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 ↔ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 ↔ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ) ) |
| 15 | elnn1uz2 | ⊢ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ↔ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 ∨ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 16 | nncn | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℂ ) | |
| 17 | nncn | ⊢ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ) | |
| 18 | nnne0 | ⊢ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) | |
| 19 | 17 18 | jca | ⊢ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) |
| 20 | 11 19 | syl | ⊢ ( 𝐾 ∈ ℕ → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) |
| 21 | 3anass | ⊢ ( ( 𝐾 ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ↔ ( 𝐾 ∈ ℂ ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) ) | |
| 22 | 16 20 21 | sylanbrc | ⊢ ( 𝐾 ∈ ℕ → ( 𝐾 ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( 𝐾 ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) |
| 24 | diveq1 | ⊢ ( ( 𝐾 ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 ↔ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 ↔ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 26 | 10 | adantr | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 2 pCnt 𝐾 ) ∈ ℕ0 ) |
| 27 | oveq2 | ⊢ ( 𝑛 = ( 2 pCnt 𝐾 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) | |
| 28 | 27 | eqeq2d | ⊢ ( 𝑛 = ( 2 pCnt 𝐾 ) → ( 𝐾 = ( 2 ↑ 𝑛 ) ↔ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∧ 𝑛 = ( 2 pCnt 𝐾 ) ) → ( 𝐾 = ( 2 ↑ 𝑛 ) ↔ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 30 | simpr | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) | |
| 31 | 26 29 30 | rspcedvd | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) |
| 32 | 31 | ex | ⊢ ( 𝐾 ∈ ℕ → ( 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) |
| 33 | pm2.24 | ⊢ ( ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) | |
| 34 | 32 33 | syl6 | ⊢ ( 𝐾 ∈ ℕ → ( 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 36 | 25 35 | sylbid | ⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 37 | 36 | com12 | ⊢ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 → ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 38 | exprmfct | ⊢ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑞 ∈ ℙ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) | |
| 39 | breq1 | ⊢ ( 𝑞 = 2 → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ↔ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) ) | |
| 40 | 39 | biimpcd | ⊢ ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 𝑞 = 2 → 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) ) |
| 41 | 40 | adantl | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( 𝑞 = 2 → 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) ) |
| 42 | 41 | necon3bd | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → 𝑞 ≠ 2 ) ) |
| 43 | 42 | ex | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → 𝑞 ≠ 2 ) ) ) |
| 44 | prmnn | ⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ ) | |
| 45 | 5 13 | mpbid | ⊢ ( 𝐾 ∈ ℕ → ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ) |
| 46 | nndivides | ⊢ ( ( 𝑞 ∈ ℕ ∧ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ) → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ↔ ∃ 𝑚 ∈ ℕ ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) ) | |
| 47 | 44 45 46 | syl2anr | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ↔ ∃ 𝑚 ∈ ℕ ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) ) |
| 48 | eqcom | ⊢ ( ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ↔ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = ( 𝑚 · 𝑞 ) ) | |
| 49 | 16 | ad2antrr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝐾 ∈ ℂ ) |
| 50 | simpr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) | |
| 51 | 44 | ad2antlr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑞 ∈ ℕ ) |
| 52 | 50 51 | nnmulcld | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 · 𝑞 ) ∈ ℕ ) |
| 53 | 52 | nncnd | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 · 𝑞 ) ∈ ℂ ) |
| 54 | 11 | ad2antrr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ ) |
| 55 | 54 19 | syl | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) |
| 56 | divmul | ⊢ ( ( 𝐾 ∈ ℂ ∧ ( 𝑚 · 𝑞 ) ∈ ℂ ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = ( 𝑚 · 𝑞 ) ↔ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) ) | |
| 57 | 49 53 55 56 | syl3anc | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = ( 𝑚 · 𝑞 ) ↔ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) ) |
| 58 | 48 57 | bitrid | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ↔ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) ) |
| 59 | simpr | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℙ ) | |
| 60 | 59 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑞 ∈ ℙ ) |
| 61 | 60 | anim1i | ⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → ( 𝑞 ∈ ℙ ∧ 𝑞 ≠ 2 ) ) |
| 62 | eldifsn | ⊢ ( 𝑞 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑞 ∈ ℙ ∧ 𝑞 ≠ 2 ) ) | |
| 63 | 61 62 | sylibr | ⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → 𝑞 ∈ ( ℙ ∖ { 2 } ) ) |
| 64 | 63 | adantr | ⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → 𝑞 ∈ ( ℙ ∖ { 2 } ) ) |
| 65 | breq1 | ⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∥ 𝐾 ↔ 𝑞 ∥ 𝐾 ) ) | |
| 66 | 65 | adantl | ⊢ ( ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) ∧ 𝑝 = 𝑞 ) → ( 𝑝 ∥ 𝐾 ↔ 𝑞 ∥ 𝐾 ) ) |
| 67 | 54 50 | nnmulcld | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) ∈ ℕ ) |
| 68 | 67 | nnzd | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) ∈ ℤ ) |
| 69 | 44 | nnzd | ⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) |
| 70 | 69 | ad2antlr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑞 ∈ ℤ ) |
| 71 | 68 70 | jca | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ) ) |
| 72 | 71 | adantr | ⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ) ) |
| 73 | dvdsmul2 | ⊢ ( ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ) → 𝑞 ∥ ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) · 𝑞 ) ) | |
| 74 | 72 73 | syl | ⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → 𝑞 ∥ ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) · 𝑞 ) ) |
| 75 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 76 | 75 | a1i | ⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℕ0 ) |
| 77 | 76 10 | nn0expcld | ⊢ ( 𝐾 ∈ ℕ → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ0 ) |
| 78 | 77 | ad2antrr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ0 ) |
| 79 | 78 | nn0cnd | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ) |
| 80 | nncn | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) | |
| 81 | 80 | adantl | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 82 | 44 | nncnd | ⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℂ ) |
| 83 | 82 | ad2antlr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑞 ∈ ℂ ) |
| 84 | 79 81 83 | 3jca | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ ) ) |
| 85 | 84 | adantr | ⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ ) ) |
| 86 | mulass | ⊢ ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ ) → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) · 𝑞 ) = ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ) | |
| 87 | 85 86 | syl | ⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) · 𝑞 ) = ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ) |
| 88 | 74 87 | breqtrd | ⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → 𝑞 ∥ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ) |
| 89 | 88 | adantr | ⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → 𝑞 ∥ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ) |
| 90 | breq2 | ⊢ ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 → ( 𝑞 ∥ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ↔ 𝑞 ∥ 𝐾 ) ) | |
| 91 | 90 | adantl | ⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → ( 𝑞 ∥ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ↔ 𝑞 ∥ 𝐾 ) ) |
| 92 | 89 91 | mpbid | ⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → 𝑞 ∥ 𝐾 ) |
| 93 | 64 66 92 | rspcedvd | ⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) |
| 94 | 93 | a1d | ⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) |
| 95 | 94 | exp31 | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 𝑞 ≠ 2 → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 96 | 95 | com23 | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 → ( 𝑞 ≠ 2 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 97 | 58 96 | sylbid | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 𝑞 ≠ 2 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 98 | 97 | rexlimdva | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( ∃ 𝑚 ∈ ℕ ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 𝑞 ≠ 2 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 99 | 47 98 | sylbid | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 𝑞 ≠ 2 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 100 | 43 99 | syldd | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 101 | 100 | rexlimdva | ⊢ ( 𝐾 ∈ ℕ → ( ∃ 𝑞 ∈ ℙ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 102 | 101 | com12 | ⊢ ( ∃ 𝑞 ∈ ℙ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 𝐾 ∈ ℕ → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 103 | 102 | impd | ⊢ ( ∃ 𝑞 ∈ ℙ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 104 | 38 103 | syl | ⊢ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 105 | 37 104 | jaoi | ⊢ ( ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 ∨ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 106 | 15 105 | sylbi | ⊢ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ → ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 107 | 106 | com12 | ⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 108 | 14 107 | sylbid | ⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 109 | 108 | ex | ⊢ ( 𝐾 ∈ ℕ → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 110 | 3 5 109 | mp2d | ⊢ ( 𝐾 ∈ ℕ → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) |
| 111 | 110 | imp | ⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) |