This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndivides | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nndiv | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ( 𝑀 · 𝑛 ) = 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℕ ) ) | |
| 2 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 4 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 6 | 3 5 | mulcomd | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · 𝑀 ) = ( 𝑀 · 𝑛 ) ) |
| 7 | 6 | eqeq1d | ⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 · 𝑀 ) = 𝑁 ↔ ( 𝑀 · 𝑛 ) = 𝑁 ) ) |
| 8 | 7 | rexbidva | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ ( 𝑛 · 𝑀 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℕ ( 𝑀 · 𝑛 ) = 𝑁 ) ) |
| 9 | nndivdvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℕ ) ) | |
| 10 | 9 | ancoms | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℕ ) ) |
| 11 | 1 8 10 | 3bitr4rd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |