This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddprmdvds | |- ( ( K e. NN /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. p e. ( Prime \ { 2 } ) p || K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2prm | |- 2 e. Prime |
|
| 2 | pcndvds2 | |- ( ( 2 e. Prime /\ K e. NN ) -> -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) |
|
| 3 | 1 2 | mpan | |- ( K e. NN -> -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 4 | pcdvds | |- ( ( 2 e. Prime /\ K e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) || K ) |
|
| 5 | 1 4 | mpan | |- ( K e. NN -> ( 2 ^ ( 2 pCnt K ) ) || K ) |
| 6 | 2nn | |- 2 e. NN |
|
| 7 | 6 | a1i | |- ( K e. NN -> 2 e. NN ) |
| 8 | 1 | a1i | |- ( K e. NN -> 2 e. Prime ) |
| 9 | id | |- ( K e. NN -> K e. NN ) |
|
| 10 | 8 9 | pccld | |- ( K e. NN -> ( 2 pCnt K ) e. NN0 ) |
| 11 | 7 10 | nnexpcld | |- ( K e. NN -> ( 2 ^ ( 2 pCnt K ) ) e. NN ) |
| 12 | nndivdvds | |- ( ( K e. NN /\ ( 2 ^ ( 2 pCnt K ) ) e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) ) |
|
| 13 | 11 12 | mpdan | |- ( K e. NN -> ( ( 2 ^ ( 2 pCnt K ) ) || K <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) ) |
| 14 | 13 | adantr | |- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) ) |
| 15 | elnn1uz2 | |- ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN <-> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 \/ ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) ) ) |
|
| 16 | nncn | |- ( K e. NN -> K e. CC ) |
|
| 17 | nncn | |- ( ( 2 ^ ( 2 pCnt K ) ) e. NN -> ( 2 ^ ( 2 pCnt K ) ) e. CC ) |
|
| 18 | nnne0 | |- ( ( 2 ^ ( 2 pCnt K ) ) e. NN -> ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) |
|
| 19 | 17 18 | jca | |- ( ( 2 ^ ( 2 pCnt K ) ) e. NN -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) |
| 20 | 11 19 | syl | |- ( K e. NN -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) |
| 21 | 3anass | |- ( ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) <-> ( K e. CC /\ ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) ) |
|
| 22 | 16 20 21 | sylanbrc | |- ( K e. NN -> ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) |
| 23 | 22 | adantr | |- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) |
| 24 | diveq1 | |- ( ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 <-> K = ( 2 ^ ( 2 pCnt K ) ) ) ) |
|
| 25 | 23 24 | syl | |- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 <-> K = ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 26 | 10 | adantr | |- ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) -> ( 2 pCnt K ) e. NN0 ) |
| 27 | oveq2 | |- ( n = ( 2 pCnt K ) -> ( 2 ^ n ) = ( 2 ^ ( 2 pCnt K ) ) ) |
|
| 28 | 27 | eqeq2d | |- ( n = ( 2 pCnt K ) -> ( K = ( 2 ^ n ) <-> K = ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 29 | 28 | adantl | |- ( ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) /\ n = ( 2 pCnt K ) ) -> ( K = ( 2 ^ n ) <-> K = ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 30 | simpr | |- ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) -> K = ( 2 ^ ( 2 pCnt K ) ) ) |
|
| 31 | 26 29 30 | rspcedvd | |- ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) -> E. n e. NN0 K = ( 2 ^ n ) ) |
| 32 | 31 | ex | |- ( K e. NN -> ( K = ( 2 ^ ( 2 pCnt K ) ) -> E. n e. NN0 K = ( 2 ^ n ) ) ) |
| 33 | pm2.24 | |- ( E. n e. NN0 K = ( 2 ^ n ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) |
|
| 34 | 32 33 | syl6 | |- ( K e. NN -> ( K = ( 2 ^ ( 2 pCnt K ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 35 | 34 | adantr | |- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( K = ( 2 ^ ( 2 pCnt K ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 36 | 25 35 | sylbid | |- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 37 | 36 | com12 | |- ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 38 | exprmfct | |- ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) -> E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) |
|
| 39 | breq1 | |- ( q = 2 -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) ) |
|
| 40 | 39 | biimpcd | |- ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q = 2 -> 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) ) |
| 41 | 40 | adantl | |- ( ( ( K e. NN /\ q e. Prime ) /\ q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( q = 2 -> 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) ) |
| 42 | 41 | necon3bd | |- ( ( ( K e. NN /\ q e. Prime ) /\ q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> q =/= 2 ) ) |
| 43 | 42 | ex | |- ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> q =/= 2 ) ) ) |
| 44 | prmnn | |- ( q e. Prime -> q e. NN ) |
|
| 45 | 5 13 | mpbid | |- ( K e. NN -> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) |
| 46 | nndivides | |- ( ( q e. NN /\ ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> E. m e. NN ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) ) |
|
| 47 | 44 45 46 | syl2anr | |- ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> E. m e. NN ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) ) |
| 48 | eqcom | |- ( ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) = ( m x. q ) ) |
|
| 49 | 16 | ad2antrr | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> K e. CC ) |
| 50 | simpr | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> m e. NN ) |
|
| 51 | 44 | ad2antlr | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. NN ) |
| 52 | 50 51 | nnmulcld | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( m x. q ) e. NN ) |
| 53 | 52 | nncnd | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( m x. q ) e. CC ) |
| 54 | 11 | ad2antrr | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) e. NN ) |
| 55 | 54 19 | syl | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) |
| 56 | divmul | |- ( ( K e. CC /\ ( m x. q ) e. CC /\ ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = ( m x. q ) <-> ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) ) |
|
| 57 | 49 53 55 56 | syl3anc | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = ( m x. q ) <-> ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) ) |
| 58 | 48 57 | bitrid | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) ) |
| 59 | simpr | |- ( ( K e. NN /\ q e. Prime ) -> q e. Prime ) |
|
| 60 | 59 | adantr | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. Prime ) |
| 61 | 60 | anim1i | |- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( q e. Prime /\ q =/= 2 ) ) |
| 62 | eldifsn | |- ( q e. ( Prime \ { 2 } ) <-> ( q e. Prime /\ q =/= 2 ) ) |
|
| 63 | 61 62 | sylibr | |- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> q e. ( Prime \ { 2 } ) ) |
| 64 | 63 | adantr | |- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> q e. ( Prime \ { 2 } ) ) |
| 65 | breq1 | |- ( p = q -> ( p || K <-> q || K ) ) |
|
| 66 | 65 | adantl | |- ( ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) /\ p = q ) -> ( p || K <-> q || K ) ) |
| 67 | 54 50 | nnmulcld | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. NN ) |
| 68 | 67 | nnzd | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ ) |
| 69 | 44 | nnzd | |- ( q e. Prime -> q e. ZZ ) |
| 70 | 69 | ad2antlr | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. ZZ ) |
| 71 | 68 70 | jca | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ /\ q e. ZZ ) ) |
| 72 | 71 | adantr | |- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ /\ q e. ZZ ) ) |
| 73 | dvdsmul2 | |- ( ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ /\ q e. ZZ ) -> q || ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) ) |
|
| 74 | 72 73 | syl | |- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> q || ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) ) |
| 75 | 2nn0 | |- 2 e. NN0 |
|
| 76 | 75 | a1i | |- ( K e. NN -> 2 e. NN0 ) |
| 77 | 76 10 | nn0expcld | |- ( K e. NN -> ( 2 ^ ( 2 pCnt K ) ) e. NN0 ) |
| 78 | 77 | ad2antrr | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) e. NN0 ) |
| 79 | 78 | nn0cnd | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) e. CC ) |
| 80 | nncn | |- ( m e. NN -> m e. CC ) |
|
| 81 | 80 | adantl | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> m e. CC ) |
| 82 | 44 | nncnd | |- ( q e. Prime -> q e. CC ) |
| 83 | 82 | ad2antlr | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. CC ) |
| 84 | 79 81 83 | 3jca | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ m e. CC /\ q e. CC ) ) |
| 85 | 84 | adantr | |- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ m e. CC /\ q e. CC ) ) |
| 86 | mulass | |- ( ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ m e. CC /\ q e. CC ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) = ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) ) |
|
| 87 | 85 86 | syl | |- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) = ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) ) |
| 88 | 74 87 | breqtrd | |- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) ) |
| 89 | 88 | adantr | |- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) ) |
| 90 | breq2 | |- ( ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K -> ( q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) <-> q || K ) ) |
|
| 91 | 90 | adantl | |- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> ( q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) <-> q || K ) ) |
| 92 | 89 91 | mpbid | |- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> q || K ) |
| 93 | 64 66 92 | rspcedvd | |- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> E. p e. ( Prime \ { 2 } ) p || K ) |
| 94 | 93 | a1d | |- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) |
| 95 | 94 | exp31 | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( q =/= 2 -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 96 | 95 | com23 | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 97 | 58 96 | sylbid | |- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 98 | 97 | rexlimdva | |- ( ( K e. NN /\ q e. Prime ) -> ( E. m e. NN ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 99 | 47 98 | sylbid | |- ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 100 | 43 99 | syldd | |- ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 101 | 100 | rexlimdva | |- ( K e. NN -> ( E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 102 | 101 | com12 | |- ( E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( K e. NN -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 103 | 102 | impd | |- ( E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 104 | 38 103 | syl | |- ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 105 | 37 104 | jaoi | |- ( ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 \/ ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) ) -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 106 | 15 105 | sylbi | |- ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 107 | 106 | com12 | |- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 108 | 14 107 | sylbid | |- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 109 | 108 | ex | |- ( K e. NN -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 110 | 3 5 109 | mp2d | |- ( K e. NN -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) |
| 111 | 110 | imp | |- ( ( K e. NN /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. p e. ( Prime \ { 2 } ) p || K ) |