This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any value of a product sequence that converges to a nonzero value is itself nonzero. (Contributed by Scott Fenton, 20-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrivcvgfvn0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ntrivcvgfvn0.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| ntrivcvgfvn0.3 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) | ||
| ntrivcvgfvn0.4 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| ntrivcvgfvn0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| Assertion | ntrivcvgfvn0 | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgfvn0.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ntrivcvgfvn0.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | ntrivcvgfvn0.3 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) | |
| 4 | ntrivcvgfvn0.4 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 5 | ntrivcvgfvn0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 6 | fclim | ⊢ ⇝ : dom ⇝ ⟶ ℂ | |
| 7 | ffun | ⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) | |
| 8 | 6 7 | ax-mp | ⊢ Fun ⇝ |
| 9 | funbrfv | ⊢ ( Fun ⇝ → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) ) | |
| 10 | 8 3 9 | mpsyl | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) |
| 12 | eqid | ⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) | |
| 13 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 14 | 1 13 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 15 | 14 2 | sselid | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → 𝑁 ∈ ℤ ) |
| 17 | seqex | ⊢ seq 𝑀 ( · , 𝐹 ) ∈ V | |
| 18 | 17 | a1i | ⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → seq 𝑀 ( · , 𝐹 ) ∈ V ) |
| 19 | 0cnd | ⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → 0 ∈ ℂ ) | |
| 20 | fveqeq2 | ⊢ ( 𝑚 = 𝑁 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) ) | |
| 21 | 20 | imbi2d | ⊢ ( 𝑚 = 𝑁 → ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ) ↔ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) ) ) |
| 22 | fveqeq2 | ⊢ ( 𝑚 = 𝑛 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) ) | |
| 23 | 22 | imbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ) ↔ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) ) ) |
| 24 | fveqeq2 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) ) | |
| 25 | 24 | imbi2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ) ↔ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) ) ) |
| 26 | fveqeq2 | ⊢ ( 𝑚 = 𝑘 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = 0 ) ) | |
| 27 | 26 | imbi2d | ⊢ ( 𝑚 = 𝑘 → ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = 0 ) ↔ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = 0 ) ) ) |
| 28 | simpr | ⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) | |
| 29 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 30 | uztrn | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 31 | 29 30 | sylan2 | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 32 | 31 | 3adant3 | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 33 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 34 | 32 33 | syl | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 35 | oveq1 | ⊢ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( 0 · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 36 | 35 | 3ad2ant3 | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( 0 · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 37 | peano2uz | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 38 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 39 | 2 37 38 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 40 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 41 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 42 | 41 | eleq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
| 43 | 42 | rspcv | ⊢ ( ( 𝑛 + 1 ) ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
| 44 | 40 43 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 45 | 39 44 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 46 | 45 | ancoms | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 47 | 46 | mul02d | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ) → ( 0 · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = 0 ) |
| 48 | 47 | 3adant3 | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → ( 0 · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = 0 ) |
| 49 | 34 36 48 | 3eqtrd | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) |
| 50 | 49 | 3exp | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝜑 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) ) ) |
| 51 | 50 | adantrd | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) ) ) |
| 52 | 51 | a2d | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = 0 ) → ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = 0 ) ) ) |
| 53 | 21 23 25 27 28 52 | uzind4i | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = 0 ) ) |
| 54 | 53 | impcom | ⊢ ( ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = 0 ) |
| 55 | 12 16 18 19 54 | climconst | ⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → seq 𝑀 ( · , 𝐹 ) ⇝ 0 ) |
| 56 | funbrfv | ⊢ ( Fun ⇝ → ( seq 𝑀 ( · , 𝐹 ) ⇝ 0 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 0 ) ) | |
| 57 | 8 55 56 | mpsyl | ⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 0 ) |
| 58 | 11 57 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 ) → 𝑋 = 0 ) |
| 59 | 58 | ex | ⊢ ( 𝜑 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = 0 → 𝑋 = 0 ) ) |
| 60 | 59 | necon3d | ⊢ ( 𝜑 → ( 𝑋 ≠ 0 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) ) |
| 61 | 4 60 | mpd | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) |